Skip to main content

Advertisement

Log in

Multi-element Exposure and Cognitive Function in Rural Elderly Chinese

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To investigate the relationship between selenium (Se) based multi-element combined exposure and cognitive function in rural elderly individuals, a cross-sectional study was conducted. The study involved 416 older adults aged 60 and above, residing in four different areas of Enshi county, China, with varying soil Se levels. Inductively coupled plasma mass spectrometry (ICP-MS) was employed to measure the concentrations of Se, copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), magnesium (Mg), cadmium (Cd), arsenic (As), and lead (Pb) in whole blood. Nine standard cognitive tests were applied to assess cognitive function. Analysis of the least absolute shrinkage and selection operator regression (LASSO), covariance (ANCOVA), and generalized linear model (GLM) were utilized to investigate the relationship between element exposure and cognitive function. The results of LASSO revealed that Se, Cu, Fe, Zn, Ca, and Pb were independently identified to be associated with cognition. Both ANCOVA and GLM demonstrated that Se and Ca were correlated with cognitive function. The multi-element model showed higher composite Z scores of 0.32 (95% CI: 0.09 to 0.55) for log-transformed Se (P = 0.007), 0.75 (95% CI: 0.01 to 1.49) for log-transformed Cu (P = 0.048), and a lower score of − 0.67 (95% CI: − 1.26 to − 0.08) for log-transformed Ca (P = 0.025). Furthermore, there was evidence that Se could counteract the negative impact of Ca on cognitive function (P for interaction = 0.031). Our findings suggested that higher levels of Se and Cu were associated with better cognitive function in the elderly and Se can counteract the cognitive damage caused by Ca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data are not publicly available due to restrictions, e.g., their containing information that could compromise the privacy of research participants.

References

  1. Jutkowitz E, Kane RL, Gaugler JE, MacLehose RF, Dowd B, Kuntz KM (2017) Societal and family lifetime cost of dementia: implications for Policy. J Am Geriatr Soc 65(10):2169–2175. https://doi.org/10.1111/jgs.15043

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jia L, Du Y, Chu L et al (2020) Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health 5(12):e661–e671. https://doi.org/10.1016/S2468-2667(20)30185-7

    Article  PubMed  Google Scholar 

  3. Melkas S, Jokinen H, Hietanen M et al (2014) Poststroke cognitive impairment and dementia: prevalence, diagnosis, and treatment. Degener Neurol Neuromuscul Dis 4:21–27. https://doi.org/10.2147/DNND.S37353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Cheng B-J, Sheng J, Wang H-L et al (2023) Selenium attenuates the association of co-exposure to arsenic, cadmium, and lead with cognitive function among Chinese community-dwelling older adults. Environ Sci Pollut Res Int 30(13):36377–36391. https://doi.org/10.1007/s11356-022-24783-y

    Article  PubMed  CAS  Google Scholar 

  5. Yu J, He Y, Yu X et al (2023) Associations between mild cognitive impairment and whole blood zinc and selenium in the elderly cohort. Biol Trace Elem Res 201(1):51–64. https://doi.org/10.1007/s12011-022-03136-3

    Article  PubMed  CAS  Google Scholar 

  6. Adebayo OL, Sandhir R, Adenuga GA (2015) Protective roles of selenium and zinc against postnatal protein-undernutrition-induced alterations in Ca2+-homeostasis leading to cognitive deficits in Wistar rats. Int J Dev Neurosci 43:1–7. https://doi.org/10.1016/j.ijdevneu.2015.03.007

    Article  PubMed  CAS  Google Scholar 

  7. Bourre JM (2006) Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients. J Nutr Health Aging 10(5):377–385

    PubMed  CAS  Google Scholar 

  8. Bakulski KM, Seo YA, Hickman RC et al (2020) Heavy metals exposure and Alzheimer’s disease and related dementias. J Alzheimers Dis 76(4):1215–1242. https://doi.org/10.3233/jad-200282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gasmi A, Menzel A, Piscopo S, Noor S (2022) Toxic metals exposure and APOE4 gene variant in cognitive decline disorders. Arch Razi Inst 77(1):1–10. https://doi.org/10.22092/ARI.2021.356078.1771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cardoso BR, Roberts BR, Bush AI, Hare DJ (2015) Selenium, selenoproteins and neurodegenerative diseases. Metallomics 7(8):1213–1228. https://doi.org/10.1039/c5mt00075k

    Article  PubMed  CAS  Google Scholar 

  11. Solovyev ND (2015) Importance of selenium and selenoprotein for brain function: from antioxidant protection to neuronal signalling. J Inorg Biochem 153:1–12. https://doi.org/10.1016/j.jinorgbio.2015.09.003

    Article  PubMed  CAS  Google Scholar 

  12. Socha K, Klimiuk K, Naliwajko SK et al (2021) Dietary habits, selenium, copper, zinc and total antioxidant status in serum in relation to cognitive functions of patients with Alzheimer’s disease. Nutrients 13(2):287. https://doi.org/10.3390/nu13020287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. McGeer PL, Rogers J, McGeer EG (2016) Inflammation, antiinflammatory agents, and Alzheimer’s disease: the Last 22 Years. J Alzheimers Dis 54(3):853–857. https://doi.org/10.3233/jad-160488

    Article  PubMed  Google Scholar 

  14. Varikasuvu SR, Prasad SV, Kothapalli J et al (2019) Brain selenium in Alzheimer’s Disease (BRAIN SEAD Study): a systematic review and Meta-Analysis. Biol Trace Elem Res 189(2):361–369. https://doi.org/10.1007/s12011-018-1492-x

    Article  PubMed  CAS  Google Scholar 

  15. Chmatalova Z, Vyhnalek M, Laczo J et al (2017) Relation of plasma selenium and Lipid peroxidation end products in patients with Alzheimer’s disease. Physiol Res 66(6):1049–1056. https://doi.org/10.33549/physiolres.933601

    Article  PubMed  CAS  Google Scholar 

  16. Cardoso BR, Szymlek-Gay EA, Roberts BR et al (2018) Selenium status is not associated with cognitive performance: a cross-sectional study in 154 older Australian adults. Nutrients 10(12):1847. https://doi.org/10.3390/nu10121847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chen J, Berry MJ (2003) Selenium and selenoproteins in the brain and brain diseases. J Neurochem 86(1):1–12. https://doi.org/10.1046/j.1471-4159.2003.01854.x

    Article  PubMed  CAS  Google Scholar 

  18. Liu H, Xu H, Huang K (2017) Selenium in the prevention of atherosclerosis and its underlying mechanisms. Metallomics 9(1):21–37. https://doi.org/10.1039/c6mt00195e

    Article  PubMed  CAS  Google Scholar 

  19. Liu H, Su L, Chen X et al (2021) Higher blood cadmium level is associated with greater cognitive decline in rural Chinese adults aged 65 or older. Sci Total Environ 756:144072. https://doi.org/10.1016/j.scitotenv.2020.144072

    Article  ADS  PubMed  CAS  Google Scholar 

  20. Yang YW, Liou SH, Hsueh YM et al (2018) Risk of Alzheimer’s disease with metal concentrations in whole blood and urine: a case-control study using propensity score matching. Toxicol Appl Pharmacol 356:8–14. https://doi.org/10.1016/j.taap.2018.07.015

    Article  PubMed  CAS  Google Scholar 

  21. Russ TC, Killin LOJ, Hannah J, Batty GD, Deary IJ, Starr JM (2020) Aluminium and fluoride in drinking water in relation to later dementia risk. Br J Psychiatry 216(1):29–34. https://doi.org/10.1192/bjp.2018.287

    Article  PubMed  Google Scholar 

  22. Liu MC, Xu Y, Chen YM et al (2013) The effect of sodium selenite on lead induced cognitive dysfunction. Neurotoxicology 36:82–88. https://doi.org/10.1016/j.neuro.2013.03.008

    Article  PubMed  CAS  Google Scholar 

  23. Aschner M (1997) Astrocyte metallothioneins (MTs) and their neuroprotective role. Ann N Y Acad Sci 825:334–347. https://doi.org/10.1111/j.1749-6632.1997.tb48445.x

    Article  ADS  PubMed  CAS  Google Scholar 

  24. Saxena R, Gamble M, Wasserman GA et al (2022) Mixed metals exposure and cognitive function in Bangladeshi adolescents. Ecotoxicol Environ Saf 232:113229. https://doi.org/10.1016/j.ecoenv.2022.113229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gu L, Yu J, Fan Y et al (2021) The association between trace elements exposure and the cognition in the elderly in China. Biol Trace Elem Res 199(2):403–412. https://doi.org/10.1007/s12011-020-02154-3

    Article  PubMed  CAS  Google Scholar 

  26. Peeri NC, Egan KM, Chai W, Tao MH (2021) Association of magnesium intake and vitamin D status with cognitive function in older adults: an analysis of US National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. Eur J Nutr. 60(1):465–474. https://doi.org/10.1007/s00394-020-02267-4

    Article  PubMed  CAS  Google Scholar 

  27. Ashraf A, Stosnach H, Parkes HG et al (2019) Pattern of altered plasma elemental phosphorus, calcium, zinc, and iron in Alzheimer’s disease. Sci Rep 9(1):3147. https://doi.org/10.1038/s41598-018-37431-8

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gao S, Jin Y, Hall KS et al (2007) Selenium level and cognitive function in rural elderly Chinese. Am J Epidemiol 165(8):955–965. https://doi.org/10.1093/aje/kwk073

    Article  PubMed  Google Scholar 

  29. Dinh QT, Cui Z, Huang J et al (2018) Selenium distribution in the Chinese environment and its relationship with human health: a review. Environ Int 112:294–309. https://doi.org/10.1016/j.envint.2017.12.035

    Article  PubMed  CAS  Google Scholar 

  30. Cheng Y, Jin Y, Unverzagt FW et al (2014) The relationship between cholesterol and cognitive function is homocysteine-dependent. Clin Interv Aging 9:1823–1829. https://doi.org/10.2147/cia.S64766

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xiao L, Zan G, Qin J et al (2021) Combined exposure to multiple metals and cognitive function in older adults. Ecotoxicol Environ Saf 222:112465. https://doi.org/10.1016/j.ecoenv.2021.112465

    Article  PubMed  CAS  Google Scholar 

  32. Cheng BJ, Wang J, Meng XL et al (2022) The association between essential trace element mixture and cognitive function in Chinese community-dwelling older adults. Ecotoxicol Environ Saf. 231:113182. https://doi.org/10.1016/j.ecoenv.2022.113182

    Article  PubMed  CAS  Google Scholar 

  33. Gerardo B, Cabral Pinto M, Nogueira J et al (2020) Associations between trace elements and cognitive decline: an exploratory 5-year follow-up study of an elderly cohort. Int J Environ Res Public Health 17(17):6051. https://doi.org/10.3390/ijerph17176051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yan X, Liu K, Sun X et al (2020) A cross-sectional study of blood selenium concentration and cognitive function in elderly Americans: National Health and Nutrition Examination Survey 2011-2014. Ann Hum Biol 47(7-8):610–619. https://doi.org/10.1080/03014460.2020.1836253

    Article  PubMed  Google Scholar 

  35. Abedelhaffez AS, Hassan A (2013) Brain derived neurotrophic factor and oxidative stress index in pups with developmental hypothyroidism: neuroprotective effects of selenium. Acta Physiol Hung 100(2):197–210. https://doi.org/10.1556/APhysiol.100.2013.2.7

    Article  PubMed  CAS  Google Scholar 

  36. Prabhu KS, Zamamiri-Davis F, Stewart JB, Thompson JT, Sordillo LM, Reddy CC (2022) Selenium deficiency increases the expression of inducible nitric oxide synthase in RAW 264.7 macrophages: role of nuclear factor-kappaB in up-regulation. Biochem J 366(Pt 1):203–209. https://doi.org/10.1042/bj20020256

    Article  Google Scholar 

  37. Schram MT, Trompet S, Kamper AM et al (2007) Serum calcium and cognitive function in old age. J Am Geriatr Soc 55(11):1786–1792. https://doi.org/10.1111/j.1532-5415.2007.01418.x

    Article  PubMed  Google Scholar 

  38. van Vliet P, Oleksik AM, Mooijaart SP, de Craen AJ, Westendorp RG (2009) APOE genotype modulates the effect of serum calcium levels on cognitive function in old age. Neurology 72(9):821–828. https://doi.org/10.1212/01.wnl.0000343852.10018.24

    Article  PubMed  CAS  Google Scholar 

  39. Joborn C, Hetta J, Niklasson F et al (1991) Cerebrospinal fluid calcium, parathyroid hormone, and monoamine and purine metabolites and the blood-brain barrier function in primary hyperparathyroidism. Psychoneuroendocrinology 16(4):311–322. https://doi.org/10.1016/0306-4530(91)90017-n

    Article  PubMed  CAS  Google Scholar 

  40. Breitwieser GE (2006) Calcium sensing receptors and calcium oscillations: calcium as a first messenger. Curr Top Dev Biol 73:85–114. https://doi.org/10.1016/S0070-2153(05)73003-9

    Article  PubMed  CAS  Google Scholar 

  41. Hille B (2001) Ion channels of excitable membranes (3rd edn), pp i-xviii, 1–814

  42. Limbrick DD Jr, Sombati S, DeLorenzo RJ (2003) Calcium influx constitutes the ionic basis for the maintenance of glutamate-induced extended neuronal depolarization associated with hippocampal neuronal death. Cell Calcium 33(2):69–81. https://doi.org/10.1016/s0143-4160(02)00054-4

    Article  PubMed  CAS  Google Scholar 

  43. Tymianski M, Tator CH (1996) Normal and abnormal calcium homeostasis in neurons: a basis for the pathophysiology of traumatic and ischemic central nervous system injury. Neurosurgery 38(6):1176–1195. https://doi.org/10.1097/00006123-199606000-00028

    Article  PubMed  CAS  Google Scholar 

  44. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat Rev Neurosci 3(11):862–872. https://doi.org/10.1038/nrn960

    Article  PubMed  CAS  Google Scholar 

  45. Verma S, Hoffmann FW, Kumar M et al (2011) Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J Immunol 186(4):2127–2137. https://doi.org/10.4049/jimmunol.1002878

    Article  PubMed  CAS  Google Scholar 

  46. Jia SZ, Xu XW, Zhang ZH et al (2021) Selenoprotein K deficiency-induced apoptosis: a role for calpain and the ERS pathway. Redox Biol 47:102154. https://doi.org/10.1016/j.redox.2021.102154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Adebayo OL, Sandhir R, Adenuga GA (2015) Protective roles of selenium and zinc against postnatal protein-undernutrition-induced alterations in Ca(2+)-homeostasis leading to cognitive deficits in Wistar rats. Int J Dev Neurosci 43:1–7. https://doi.org/10.1016/j.ijdevneu.2015.03.007

    Article  PubMed  CAS  Google Scholar 

  48. Wang X, Li X, Xing Y et al (2021) Threshold effects of total copper intake on cognitive function in US older adults and the moderating effect of fat and saturated fatty acid intake. J Acad Nutr Diet 121(12):2429–2442. https://doi.org/10.1016/j.j.2021.06.002

    Article  PubMed  Google Scholar 

  49. Li S, Sun W, Zhang D (2019) Association of zinc, iron, copper, and selenium intakes with low cognitive performance in older adults: a cross-sectional study from National Health and Nutrition Examination Survey (NHANES). J Alzheimers Dis 72(4):1145–1157. https://doi.org/10.3233/jad-190263

    Article  PubMed  Google Scholar 

  50. Klevay LM (2008) Alzheimer’s disease as copper deficiency. Med Hypotheses 70(4):802–807. https://doi.org/10.1016/j.mehy.2007.04.051

    Article  PubMed  CAS  Google Scholar 

  51. Al-khateeb E, Al-zayadneh E, Al-dalahmah O et al (2014) Relation between copper, lipid profile, and cognition in elderly Jordanians. J Alzheimers Dis 41(1):203–211. https://doi.org/10.3233/jad-132180

    Article  PubMed  CAS  Google Scholar 

  52. Gong Z, Song W, Gu M (2022) Serum copper and zinc concentrations and cognitive impairment in older adults aged 60 years and older. Biol Trace Elem Res 200(4):1495–1501. https://doi.org/10.1007/s12011-021-02765-4

    Article  PubMed  CAS  Google Scholar 

  53. Lam PK, Kritz-Silverstein D, Barrett Connor E et al (2008) Plasma trace elements and cognitive function in older men and women: the Rancho Bernardo study. J Nutr Health Aging 12(1):22–27. https://doi.org/10.1007/bf02982160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wasowicz W, Gromadzińska J, Rydzyński K (2001) Blood concentration of essential trace elements and heavy metals in workers exposed to lead and cadmium. Int J Occup Med Environ Health 14(3):223–229

    PubMed  CAS  Google Scholar 

  55. Fan C, Zhan Z, Zhang X et al (2022) Research for type 2 diabetes mellitus in endemic arsenism areas in central China: role of low level of arsenic exposure and KEAP1 rs11545829 polymorphism. Arch Toxicol 96(6):1673–1683. https://doi.org/10.1007/s00204-022-03279-1

    Article  PubMed  CAS  Google Scholar 

  56. Yedomon B, Menudier A, Etangs FLD et al (2017) Biomonitoring of 29 trace elements in whole blood from inhabitants of Cotonou (Benin) by ICP-MS. J Trace Elem Med Biol 43:38–45. https://doi.org/10.1016/j.jtemb.2016.11.004

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from National Key Research and Development Program of China (2018YFC1801102), the Key Laboratory of Trace Element and Nutrition, National Health Commission of China (WLKFZ202201) and the National Institutes of Health of USA (R01AG019181). The authors express thanks to all the involved staff from the Chinese local cooperative hospitals and Centers for Disease Control and Prevention for their efforts.

Author information

Authors and Affiliations

Authors

Contributions

Lidan Duan: data curation, software, formal analysis, and writing—original draft. Liqin Su: conceptualization, funding acquisition, project administration, and writing—review and editing. Xiaohong He: investigation and data curation. Yegang Du: investigation and data curation. Yanying Duan: data curation, methodology, and writing—original draft. Ning Xu: investigation and data curation. Rangpeng Wu: investigation and data curation. Yunfeng Zhu: investigation and data curation. Ranqi Shao: data curation and validation. Frederick W Unverzagt: resources and supervision. Ann M. Hake: resources and supervision. Yinlong Jin: funding acquisition, resources, and project administration. Sujuan Gao: funding acquisition, resources, and project administration.

Corresponding author

Correspondence to Liqin Su.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Su, L., He, X. et al. Multi-element Exposure and Cognitive Function in Rural Elderly Chinese. Biol Trace Elem Res 202, 1401–1410 (2024). https://doi.org/10.1007/s12011-023-03774-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03774-1

Keywords

Navigation