Skip to main content
Log in

Co-supplementation of Vitamin K2 and Selenium Synergistically Improves Metabolic Status and Reduces Cardiovascular Risk Markers in Dyslipidemic Rabbits

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This work investigated the impact of vitamin K2 and selenium co-supplementation on metabolic profile and indicators of cardiovascular health in dyslipidemic rabbits. Fifty adult male rabbits were equally allocated into 5 groups: Control group, Dyslipidemic group: received 0.5% cholesterol in diet for 12 weeks, groups 3, 4 and 5 dyslipidemic rabbits daily treated with vitamin K2 (10 mg/kg bw) or/and selenium (1 mg/kg bw) for 8 weeks. Co-supplementation of vitamin K2 and selenium significantly decreased body weight gain and blood pressure elevation in dyslipidemic rabbits compared to un-treated ones. Consuming vitamin K2 plus selenium also markedly lowered serum lipids encompassing cholesterol, triglycerides and LDL and elevated HDL relative to placebo. Additionally, such co-supplementation reduced fasting glucose and insulin, enhancing insulin sensitivity with respect to placebo. Regarding cardiovascular risk markers, dyslipidemic rabbits received vitamin K2 concurrently with selenium displayed lower levels of atherogenic index (LDL/HDL), serum C-reactive protein, heart fatty acid-binding protein and asymmetric dimethylarginine as well as aortic ox-LDL, lipid peroxidation and calcium but higher levels of serum nitric oxide and aortic total antioxidants than un-treated ones. Concomitant administration of vitamin K2 and selenium improved metabolic profile, markers of cardiovascular health and atherosclerosis in dyslipidemic rabbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data were included in published paper.

References

  1. World Health Organisation (2011) Global Atlas on cardiovascular disease prevention and control. Geneva: World Health Organisation; Cited 14 May 2020 http://www.who.int/cardiovascular_diseases/publications/atlas_cvd/en

  2. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131. https://doi.org/10.1056/NEJMoa1707914

    Article  CAS  PubMed  Google Scholar 

  3. McNeill AM, Rosamond WD, Girman CJ, Golden SH, Schmidt MI, East HE, Ballantyne CM, Heiss G (2005) The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care 28:385–390. https://doi.org/10.2337/diacare.28.2.385

    Article  PubMed  Google Scholar 

  4. Junker R, Heinrich J, Schulte H, Van De Loo J, Assmann G (1997) Coagulation factor VII and the risk of coronary heart disease in healthy men. Arterioscler Thromb Vasc Biol 17:1539–1544. https://doi.org/10.1161/01.ATV.17.8.1539

    Article  CAS  PubMed  Google Scholar 

  5. Holvoet P (2008) Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease. Verh K Acad Geneeskd Belg 70:193–219

    CAS  PubMed  Google Scholar 

  6. Saris WH, Asp NG, Björck I, Blaak E, Bornet F, Brouns F, Frayn KN, Fürst P, Riccardi G, Roberfroid M, Vogel M (1998) Functional food science and substrate metabolism. Br J Nutr 80:S47–S75

    Article  CAS  PubMed  Google Scholar 

  7. Shenkin A (2006) Micronutrients in health and disease. Postgrad Med J 82:559–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shearer MJ, Fu X, Booth SL (2012) Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv Nutr 3:182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hussein AG, Mohamed RH, Shalaby SM, Abd El Motteleb DM (2017) Vitamin K2 alleviates type 2 diabetes in rats by induction of osteocalcin gene expression. Nutrition S0899–9007(17):30219–30228

    Google Scholar 

  10. Kawashima H, Nakajima Y, Matubara Y, Nakanowatari J, Fukuta T, Mizuno S, Takahashi S, Tajima T, Nakamura T (1997) Effects of vitamin K2 (menatetrenone) on atherosclerosis and blood coagulation in hypercholesterolemic rabbits. Jpn J Pharmacol 75:135–143

    Article  CAS  PubMed  Google Scholar 

  11. Pollock NK, Nguyen J, Fain ME, Gower BA, Bassali R, Davis CL (2016) Menaquinone-7 supplementation improves lipid profile in obese African-American children: a randomized controlled trial. FASEB J 30:423–426

    Google Scholar 

  12. Bellinge JW, Dalgaard F, Murray K, Connolly E, Blekkenhorst LC, Bondonno CP, ..., Bondonno NP (2021) Vitamin K Intake and atherosclerotic cardiovascular disease in the danish diet cancer and health study. J Am Heart Assoc 10(16): e020551‏

  13. Chen HG, Sheng LT, Zhang YB, Cao AL, Lai YW, Kunutsor SK, Jiang L, Pan A (2019) Association of vitamin K with cardiovascular events and all-cause mortality: a systematic review and meta-analysis. Eur J Nutr 58:2191–2205. https://doi.org/10.1007/s00394-019-01998-3

    Article  CAS  PubMed  Google Scholar 

  14. Shea MK, Barger K, Booth SL, Matuszek G, Cushman M, Benjamin EJ, Kritchevsky SB, Weiner DE (2020) Vitamin K status, cardiovascular disease, and all-cause mortality: a participant-level meta-analysis of 3 US cohorts. Am J Clin Nutr 111:1170–1177. https://doi.org/10.1093/ajcn/nqaa082

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang N, Tan H-Y, Li S, Xu Y, Guo W, Feng Y (2017) Supplementation of micronutrient selenium in metabolic diseases: its role as an antioxidant. Oxid Med Cell Longev 2017:7478523. https://doi.org/10.1155/2017/7478523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karalis DT (2019) The beneficiary role of selenium in type II diabetes: a longitudinal study. Cureus 11(12)

  17. Ramadan KS, Yousef JM, Hamza AH, Abdel Basset SE (2012) A positive role for selenium in mitigating complications associated with fructose-induced metabolic syndrome in rats. Int J Nutr Metab 4:146–150

    CAS  Google Scholar 

  18. Zulet MA, Puchau B, Hermsdorff HH, Navarro C, Martinez JA (2009) Dietary selenium intake is negatively associated with serum sialic acid and metabolic syndrome features in healthy young adults. Nutr Res 29:41–48

    Article  CAS  PubMed  Google Scholar 

  19. Karita K, Yamanouchi Y, Takano T, Oku J, Kisaki T, Yano E (2008) Associations of blood selenium and serum lipid levels in Japanese premenopausal and postmenopausal women. Menopause 15:119–124

    Article  PubMed  Google Scholar 

  20. Fuster V, Badimon L, Badimon JJ, Chesebro JH (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med 326:242–250

    Article  CAS  PubMed  Google Scholar 

  21. Beaglehole R, Jackson R, Watkinson J, Scragg R, Yee RL (1990) Decreased blood selenium and risk of myocardial infarction. Int J Epidemiol 19:918–922

    Article  CAS  PubMed  Google Scholar 

  22. Ali Kelani AI, El-Deen Mohammed HS, Soliman MM, Sayed M, El-Badre HM, Fathi MA (2018) Serum selenium level in acute myocardial infarction. Egypt J Int Med 30:28–34

    Article  Google Scholar 

  23. Altekin E, Çoker C, Şişman AR, Önvural B, Kuralay F, Kırımlı Ö (2005) The relationship between trace elements and cardiac markers in acute coronary syndromes. J Trace Elem Med Biol 18:235–242

    Article  CAS  PubMed  Google Scholar 

  24. Mirdamadi A, Rafiei R, Kahazaipour G, Fouladi L (2019) Selenium level in patients with heart failure versus normal individuals. Int J Prev Med 10:210

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nayak D, Karmen C, Frishman W, Vakili B (2001) Antioxidant vitamins and enzymatic and synthetic oxygen-derived free radical scavengers in the prevention and treatment of cardiovascular disease. Heart Dis (Hagerstown, Md) 3:28–45

    Article  CAS  Google Scholar 

  26. Kiełczykowska M, Kocot J, Pa’zdzior M, Musik I (2018) Selenium——a fascinating antioxidant of protective properties. Adv Clin Exp Med 27:245–255

    Article  PubMed  Google Scholar 

  27. Cao C et al (2018) Inflammatory response occurs in veins of broiler chickens treated with a selenium deficiency diet. Biol Trace Elem Res 183:361–369

    Article  CAS  PubMed  Google Scholar 

  28. Ferrans VJ, Van Vleet JF (1985) Cardiac lesions of selenium-vitamin E deficiency in animals. Heart Ves 1:294–297

    Article  CAS  Google Scholar 

  29. Zhang Y et al (2019) MicroRNA-33-3p regulates vein endothelial cell apoptosis in selenium-deficient broilers by targeting E4F1. Oxid Med Cell Longev 2019:6274010

    PubMed  PubMed Central  Google Scholar 

  30. Arthur JR, McKenzie RC, Beckett GJ (2003) Selenium in the immune system. J Nutr 133:1457s–1459s

    Article  CAS  PubMed  Google Scholar 

  31. Cao YZ, Reddy CC, Sordillo LM (2000) Altered eicosanoid biosynthesis in selenium-deficient endothelial cells. Free Radical Biol Med 28:381–389

    Article  CAS  Google Scholar 

  32. Branco V, Can’ario J, Lu J, Holmgren A, Carvalho C (2012) Mercury and selenium interaction in vivo: effects on thioredoxin reductase and glutathione peroxidase. Free Radical Biol Med 52:781–793

    Article  CAS  Google Scholar 

  33. Huang K, Liu H, Chen Z, Xu H (2002) Role of selenium in cytoprotection against cholesterol oxide-induced vascular damage in rats. Atherosclerosis 162:137–144

    Article  CAS  PubMed  Google Scholar 

  34. Liu H, Xu H, Huang K (2017) Selenium in the prevention of atherosclerosis and its underlying mechanisms. Metall 9:21–37

    Article  CAS  Google Scholar 

  35. Li S et al (2020) Se deficiency induces renal pathological changes by regulating selenoprotein expression, disrupting redox balance, and activating inflammation. Metall 12:1576–1584

    Article  CAS  Google Scholar 

  36. Chi Q, Zhang Q, Lu Y, Zhang Y, Xu S, Li S (2021) Roles of selenoprotein S in reactive oxygen species-dependent neutrophil extracellular trap formation induced by selenium-deficient arteritis. Redox Biol 44:102003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Douillet C, Bost M, Accominotti M, Borson-Chazot F, Ciavatti M (1998) Effect of selenium and vitamin E supplements on tissue lipids, peroxides, and fatty acid distribution in experimental diabetes. Lipids 33:393–399

    Article  CAS  PubMed  Google Scholar 

  38. Wbjcicki J, Rbiewicka L, Barcew-Wiszniewska B, Samochowiec L, Juiwiak S, Kadlubowska D, Tustanowski S, Juzyszyn (1991) Effect of selenium and vitamin E on the development of experimental atherosclerosis in rabbits. Atherosclerosis 87:9–16

    Article  Google Scholar 

  39. Mathew A, Bashir S, de Roos B, Sneddon AA (2019) Interaction of selenium and vitamin D and its relevance to atherosclerosis. Proc Nutr Soc 78(OCE1)

  40. Sheweita SA, El-dafrawi YA, El-ghalid OA, Ghoneim AA, Wahid A (2022) Antioxidants (selenium and garlic) alleviated the adverse effects of tramadol on the reproductive system and oxidative stress markers in male rabbits. Sci Rep 12:13958. https://doi.org/10.1038/s41598-022-16862-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Newairy AA, El-Sharaky AS, Badreldeen MM, Eweda SM, Sheweita SA (2007) The hepatoprotective effects of selenium against cadmium toxicity in rats. Toxicology 242:23–30. https://doi.org/10.1016/j.tox.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  42. Sabatine MS, Morrow DA, De Lemos JA, Gibson CM, Murphy SA, Rifai N, McCabe C, Antman EM, Cannon CP, Braunwald E (2002) Multimarker approach to risk stratification in non-ST elevation acute coronary syndromes: simultaneous assessment of troponin I, C-reactive protein, and B-type natriuretic peptide. Circulation 105:1760–1763

    Article  CAS  PubMed  Google Scholar 

  43. Elmadbouh I, Mahfouz R, Bayomy N et al (2012) The value of human heart–type fatty acid binding protein in diagnosis of patients with acute chest pain. Egypt Heart J 64(4):179–184

    Article  Google Scholar 

  44. Chen CY, Hsu HC, Lee BC et al (2010) Exercise training improves cardiac function in infarcted rabbits: involvement of autophagic function and fatty acid utilization. Eur J Heart Fail 12(4):323–330

    Article  CAS  PubMed  Google Scholar 

  45. Editorial commentary (2016) Heart-type fatty acid-binding protein (H-FABP) and coronary heart disease. Indian Heart J 68:16–18

    Article  Google Scholar 

  46. Balakumar P et al (2008) Potential target sites to modulate vascular endothelial dysfunction: current perspectives and future directions. Toxicology 245:49–64

    Article  CAS  PubMed  Google Scholar 

  47. Sydow K, Munzel T (2003) ADMA and oxidative stress. Atherosclerosis 4:41–51

    Article  CAS  PubMed  Google Scholar 

  48. Li D, Mehta JL (2005) Oxidized LDL, a critical factor in atherogenesis. Cardiovasc Res 68:353–354

    Article  CAS  PubMed  Google Scholar 

  49. Teperikidis E (2012) Hypotension associated with menaquinone. Am J Health Syst Pharm 69(15):1307–1309

    Article  CAS  PubMed  Google Scholar 

  50. Vissers LE, Dalmeijer GW, Boer JM, Verschuren WM, van der Schouw YT, Beulens JW (2016) The relationship between vitamin K and peripheral arterial disease. Atherosclerosis 252:15–20

    Article  CAS  PubMed  Google Scholar 

  51. Ceriello A (2008) Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care 2:S181–S184

    Article  Google Scholar 

  52. Rayman MP (2000) The importance of selenium to human health. Lancetn 356:233–241

    Article  CAS  Google Scholar 

  53. Nawrot TS, Staessen JA, Roels HA, Den Hond E, Thijs L, Fagard RH et al (2007) Blood pressure and blood selenium: a cross-sectional and longitudinal population study. Eur Heart J 28:628–633. https://doi.org/10.1093/eurheartj/ehl479

    Article  CAS  PubMed  Google Scholar 

  54. Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E (2009) Serum selenium concentrations and hypertension in the US Population. Circ Cardiovasc Qual Outcomes 2:369–376. https://doi.org/10.1161/CIRCOUTCOMES.108.831552

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wu G, Li Z, Ju W, Yang X, Fu X, Gao X (2018) Cross-sectional study: relationship between serum selenium and hypertension in the Shandong Province of China. Biol Trace Elem Res 185:295–301. https://doi.org/10.1007/s12011-018-1272-7

    Article  CAS  PubMed  Google Scholar 

  56. Kuropatkina T, Pavlova O, Gulyaev M, Pirogov Y, Khutorova A, Stvolinsky S, ... Medvedev O (2022) Sex-dependent protective effect of combined application of solubilized ubiquinol and selenium on monocrotaline-induced pulmonary hypertension in Wistar rats. Antioxidants 11(3): 549.‏

  57. Hidetoshi K, Yoshikage N, Yoshio M, Junichi N, Taneo F, Saburo M ... , Tetsuya N (1997) Effects of vitamin K2 (menatetrenone) on atherosclerosis and blood coagulation in hypercholesterolemic rabbits. Japanese journal of pharmacology 75(2): 135–143.‏

  58. Helmy MY, Elsaid NH, Gwad MMA (2022) The association of vitamin K2 level with the glycaemic status in type 2 diabetic patients: a case-control study. Indian J Endocrinol Metab 26(1):87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dam V, Dalmeijer GW, Vermeer C, Drummen NE, Knapen MH, van der Schouw YT, Beulens JW (2015) Association between vitamin K and the metabolic syndrome: a 10-year follow-up study in adults. J Clin Endocrinol Metab 100:2472–2479. https://doi.org/10.1210/jc.2014-4449

    Article  CAS  PubMed  Google Scholar 

  60. Li Y, Chen JP, Duan L, Li S (2018) Effect of vitamin K2 on type 2 diabetes mellitus: A review. Diabetes Res Clin Pract 136:39–51

    Article  CAS  PubMed  Google Scholar 

  61. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, Allen K, Lopes M, Savoye M, Morrison J et al (2004) Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 350:2362–2374. https://doi.org/10.1056/NEJMoa031049

    Article  CAS  PubMed  Google Scholar 

  62. Elseweidy MM, Amin RS, Atteia HH, Aly MA (2018) Nigella sativa oil and chromium picolinate ameliorate fructose-induced hyperinsulinemia by enhancing insulin signaling and suppressing insulin-degrading enzyme in male rats. Biol Trace Elem Res 184(1):119–126

    Article  CAS  PubMed  Google Scholar 

  63. Kumar R, Binkley N, Vella A (2010) Effect of phylloquinone supplementation on glucose homeostasis in humans. Am J Clin Nutr 92:1528–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yoshida M, Jacques PF, Meigs JB, Saltzman E, Shea MK, Gundberg C, Dawson-Hughes B, Dallal G, Booth SL (2008) Effect of vitamin K supplementation on insulin resistance in older men and women. Diabetes Care 31:2092–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Choi HJ, Yu J, Choi H, An JH, Kim SW, Park KS, Jang HC, Kim SY, Shin CS (2011) Vitamin K2 supplementation improves insulin sensitivity via osteocalcin metabolism: a placebo-controlled trial. Diabetes Care 34(9):e147

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kim M, Na W, Sohn C (2014) Menaquinone benefits weight control and improves inflammatory biomarkers in high-fat diet-induced obese rats. FASEB J 28(815):1. https://doi.org/10.1096/fasebj.28.1_supplement.815.1

    Article  Google Scholar 

  67. Beulens JWJ, van der A DL, Grobbee DE, Sluijs I, Spijkerman AMW, van der Schouw YT (2010) Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabetes Care 33:1699–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kholoud SR, Jehad MY, Amal HH, Safinaz EAB (2012) A positive role for selenium in mitigating complications associated with fructose-induced metabolic syndrome in rats. Int J Nutr Metab 4(11):146–150

    Google Scholar 

  69. Stapleton SR (2000) Selenium: an insulin mimetic. Cell Mol Lif Sci 57:1874–1879

    Article  CAS  Google Scholar 

  70. Becker DJ, Reul B, Ozcelikay AT, Buchent JP, Henquin JC, Brichard SM (1996) Oral selenate improves glucose homeostasis and partly reverses abnormal expression of liver glycolytic and gluconeogenic enzyme in diabetic rats. Diabetologia 39:3–11

    Article  CAS  PubMed  Google Scholar 

  71. Berg EA, Wu JY, Campbell L, Kagey M, Stapleton SR (1995) Insulin like effect of vanadate and selenate on the expression of glucose-6-phosphate dehydrogenase and fatty acid synthase in diabetic rats. Biochimie 77:919–924

    Article  CAS  PubMed  Google Scholar 

  72. Wang Y, Lin M, Gao X, Pedram P, Du J, Vikram C et al (2017) High dietary selenium intake is associated with less insulin resistance in the Newfoundland population. PLoS One 12:e0174149

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jamilian M, Razavi M, Fakhrie Kashan Z, Ghandi Y, Bagherian T, Asemi Z (2015) Metabolic response to selenium supplementation in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Clin Endocrinol (Oxf) 82:885e91

    Article  Google Scholar 

  74. Kim JE, Choi SI, Lee HR, Hwang IS, Lee YJ, An BS et al (2012) Selenium significantly inhibits adipocyte hypertrophy and abdominal fat accumulation in OLETF rats via induction of fatty acid beta-oxidation. Biol Trace Elem Res 150:360e70

    Article  Google Scholar 

  75. Kamali A, Amirani E, Asemi Z (2019) Effects of selenium supplementation on metabolic status in patients undergoing for coronary artery bypass grafting (CABG) surgery: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res 191(2):331–337

    Article  CAS  PubMed  Google Scholar 

  76. Bahmani F, Kia M, Soleimani A, Asemi Z, Esmaillzadeh A (2016) Effect of selenium supplementation on glycemic control and lipid profiles in patients with diabetic nephropathy. Biol Trace Elem Res 172:282–289

    Article  CAS  PubMed  Google Scholar 

  77. Hariri E, Kassis N, Iskandar JP, Schurgers LJ, Saad A, Abdelfattah O, ... , Kapadia S (2021) Vitamin K2—a neglected player in cardiovascular health: a narrative review. Open heart 8(2): e001715

  78. Knapen MHJ, Jardon KM, Vermeer C (2018) Vitamin K-induced effects on body fat and weight: results from a 3-year vitamin K2 intervention study. Eur J Clin Nutr 72(1):136–141

    Article  CAS  PubMed  Google Scholar 

  79. Bar A, Kus K, Manterys A, Proniewski B, Sternak M, Przyborowski K, ... , Chlopicki S (2019) Vitamin K2-MK-7 improves nitric oxide-dependent endothelial function in ApoE/LDLR−/− mice. Vascular Pharmacology 122: 106581.

  80. Handy DE, Joseph J, Loscalzo J (2021) Selenium, a micronutrient that modulates cardiovascular health via redox enzymology. Nutrients 13(9):3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saliba W, El Fakih R, Shaheen W (2010) Heart failure secondary to selenium deficiency, reversible after supplementation. Int J Cardiol 141(2):e26–e27

    Article  CAS  PubMed  Google Scholar 

  82. Loscalzo J (2014) Keshan disease, selenium deficiency, and the selenoproteome Longo DL, editor. N Engl J Med 370(18):1756–60. https://doi.org/10.1056/NEJMcibr1402199

    Article  CAS  PubMed  Google Scholar 

  83. Zhou H, Wang T, Li Q, Li D (2018) Prevention of Keshan disease by selenium supplementation: a systematic review and meta-analysis. Biol Trace Elem Res 186(1):98–105. https://doi.org/10.1007/s12011-018-1302-5

    Article  CAS  PubMed  Google Scholar 

  84. Rashidi BH, Mohammad Hosseinzadeh F, Alipoor E, Asghari S, Yekaninejad MS, Hosseinzadeh-Attar MJ (2020) Effects of selenium supplementation on asymmetric dimethylarginine and cardiometabolic risk factors in patients with polycystic ovary syndrome. Biol Trace Elem Res 196(2):430–437

    Article  CAS  PubMed  Google Scholar 

  85. Ohyashiki T, Yabunaka Y, Matsui K (1991) Antioxidant effect of vitamin K homologues on ascorbic acid/Fe2+-induced lipid peroxidation of lecithin liposomes. Chem Pharm Bull (Tokyo) 39:976–979

    Article  CAS  PubMed  Google Scholar 

  86. Kruk J, Schmid GH, Strzalka K (1994) Antioxidant properties of plastoquinol and other biological prenylquinols in liposomes and solution. Free Rad Res 21:409–416

    Article  CAS  Google Scholar 

  87. Beulens JW, Bots ML, Atsma F et al (2009) High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis 203(2):489–493

    Article  CAS  PubMed  Google Scholar 

  88. Geleijnse JM, Vermeer C, Grobbee DE et al (2004) Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr 134(11):3100–3105

    Article  CAS  PubMed  Google Scholar 

  89. Maresz K (2015) Proper calcium use: vitamin K2 as a promoter of bone and cardiovascular health. Integr Med: A Clinician’s Journal 14(1):34

    Google Scholar 

  90. Rusu M, Cristea V, Frentiu T, Marutoiu C, Rusu LD (2013) Magnesium and selenium in diabetics with peripheral artery disease of the lower limbs. Clujul Med 86:235e9

    Google Scholar 

  91. Ju W, Li X, Li Z, Wu GR, Fu XF, Yang XM et al (2017) The effect of selenium supplementation on coronary heart disease: a systematic review and metaanalysis of randomized controlled trials. J Trace Elem Med Biol 44:8e16

    Article  Google Scholar 

  92. Zeng J, Zhou J, Huang K (2009) Effect of selenium on pancreatic proinflammatory cytokines in streptozotocin-induced diabetic mice. J Nutr Biochem 20:530e6

    Article  Google Scholar 

  93. Liu H, Xu H, Huang K (2017) Selenium in the prevention of atherosclerosis and its underlying mechanisms. Metallomics 9(1):21–37

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hebatallah Atteia designed and performed the experiment, analyzed biological samples and results, wrote the main manuscript text and prepared figures and tables. Hebatallah Atteia reviewed also the manuscript.

Corresponding author

Correspondence to Hebatallah Husseini Atteia.

Ethics declarations

Conflict of Interest

The author declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atteia, H.H. Co-supplementation of Vitamin K2 and Selenium Synergistically Improves Metabolic Status and Reduces Cardiovascular Risk Markers in Dyslipidemic Rabbits. Biol Trace Elem Res 201, 4758–4768 (2023). https://doi.org/10.1007/s12011-023-03569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03569-4

Keywords

Navigation