Skip to main content
Log in

A State-of-the-Art Systemic Review on Selenium Nanoparticles: Mechanisms and Factors Influencing Biogenesis and Its Potential Applications

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium is a trace element required for the active function of numerous enzymes and various physiological processes. In recent years, selenium nanoparticles draw the attention of scientists and researchers because of its multifaceted uses. The process involved in chemically synthesized SeNPs has been found to be hazardous in nature, which has paved the way for safe and ecofriendly SeNPs to be developed in order to achieve sustainability. In comparison to chemical synthesis, SeNPs can be synthesized more safely and with greater flexibility utilizing bacteria, fungi, and plants. This review focused on the synthesis of SeNPs utilizing bacteria, fungi, and plants; the mechanisms involved in SeNP synthesis; and the effect of various abiotic factors on SeNP synthesis and morphological characteristics. This article discusses the synergies of SeNP synthesis via biological routes, which can help future researchers to synthesize SeNPs with more precision and employ them in desired fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Alkhudhayri A, Dkhil M, Al-Quraishy S (2018) Nanoselenium prevents eimeriosis-induced inflammation and regulates mucin gene expression in mice jejunum. Int J Nanomedicine 13:1993–2003. https://doi.org/10.2147/IJN.S162355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Abdelghany AM, Soliman HA, Khatab TK (2021) Biosynthesized selenium nanoparticles as a new catalyst in the synthesis of quinazoline derivatives in pentacyclic system with docking validation as (TRPV1) inhibitor. J Organomet Chem 944:121847. https://doi.org/10.1016/J.JORGANCHEM.2021.121847

    Article  CAS  Google Scholar 

  3. Abedi S, Iranbakhsh A, Oraghi Ardebili Z, Ebadi M (2021) Nitric oxide and selenium nanoparticles confer changes in growth, metabolism, antioxidant machinery, gene expression, and flowering in chicory (Cichorium intybus L.): potential benefits and risk assessment. Environ Sci Pollut Res 28:3136–3148. https://doi.org/10.1007/S11356-020-10706-2/FIGURES/6

    Article  CAS  Google Scholar 

  4. Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M, Haider J, Khan M, Khan Q, Maqbool M (2022) Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv Colloid Interface Sci 300:102597. https://doi.org/10.1016/j.cis.2021.102597

    Article  CAS  PubMed  Google Scholar 

  5. Ahmad MS, Yasser MM, Sholkamy EN, Ali AM, Mehanni MM (2015) Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. Int J Nanomedicine 10:3389. https://doi.org/10.2147/IJN.S82707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Asghar HMA, Bhattacharjee S (2019) Mechanistic investigation of phytochemicals involved in green synthesis of gold nanoparticles using aqueous Elaeis guineensis leaves extract: role of phenolic compounds and flavonoids. Biotechnol Appl Biochem 66:698–708. https://doi.org/10.1002/BAB.1787

    Article  CAS  PubMed  Google Scholar 

  7. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. https://doi.org/10.1016/j.jare.2015.02.007

    Article  PubMed Central  PubMed  Google Scholar 

  8. Akçay FA, Avcı A (2020) Effects of process conditions and yeast extract on the synthesis of selenium nanoparticles by a novel indigenous isolate Bacillus sp. EKT1 and characterization of nanoparticles. Arch Microbiol 202:2233–2243. https://doi.org/10.1007/S00203-020-01942-8

    Article  PubMed  Google Scholar 

  9. Alagesan V, Venugopal S (2018) Green synthesis of selenium nanoparticle using leaves extract of withania somnifera and its biological applications and photocatalytic activities. BioNanoScience 9(1):105–116. https://doi.org/10.1007/S12668-018-0566-8

    Article  Google Scholar 

  10. Alam H, Khatoon N, Raza M, Ghosh PC, Sardar M (2019) Synthesis and characterization of nano selenium using plant biomolecules and their potential applications. Bionanoscience 9:96–104. https://doi.org/10.1007/S12668-018-0569-5

    Article  Google Scholar 

  11. Al-Deriny SH, Dawood MAO, Elbialy ZI, El-Tras WF, Mohamed RA (2020) Selenium nanoparticles and spirulina alleviate growth performance, hemato-biochemical, immune-related genes, and heat shock protein in Nile Tilapia (Oreochromis niloticus). Biol Trace Elem Res 198(2):661–668. https://doi.org/10.1007/S12011-020-02096-W

    Article  CAS  PubMed  Google Scholar 

  12. Alghuthaymi MA, Diab AM, Elzahy AF, Mazrou KE, Tayel AA, Moussa SH (2021) Green biosynthesized selenium nanoparticles by cinnamon extract and their antimicrobial activity and application as edible coatings with nano-chitosan. J Food Qual 2021.https://doi.org/10.1155/2021/6670709

  13. Alqadi MK, Abo Noqtah OA, Alzoubi FY, Alzouby J, Aljarrah K (2014) pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Mater Sci-Poland 32(1):107–111. https://doi.org/10.2478/S13536-013-0166-9

    Article  CAS  Google Scholar 

  14. Amin MA, Ismail MA, Badawy AA, Awad MA, Hamza MF, Awad MF, Fouda A (2021) The potency of fungal-fabricated selenium nanoparticles to improve the growth performance of Helianthus annuus L. and control of cutworm Agrotis ipsilon. Catalysts 11:1551. https://doi.org/10.3390/CATAL11121551

    Article  CAS  Google Scholar 

  15. Anders CB, Eixenberger JE, Franco NA, Hermann RJ, Rainey KD, Chess JJ, Punnoose A, Wingett DG (2018) ZnO nanoparticle preparation route influences surface reactivity, dissolution and cytotoxicity. Environ Sci Nano 5:572–588. https://doi.org/10.1039/C7EN00888K

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Anu K, Devanesan S, Prasanth R, AlSalhi MS, Ajithkumar S, Singaravelu G (2020) Biogenesis of selenium nanoparticles and their anti-leukemia activity. J King Saud Univ Sci 32:2520–2526. https://doi.org/10.1016/J.JKSUS.2020.04.018

    Article  Google Scholar 

  17. Anu K, Singaravelu G, Murugan K, Benelli G (2017) Green-Synthesis of selenium nanoparticles using garlic cloves (allium sativum): biophysical characterization and cytotoxicity on vero cells. J Clust Sci 28:551–563. https://doi.org/10.1007/S10876-016-1123-7

    Article  CAS  Google Scholar 

  18. Ashour AH, El-Batal AI, Maksoud MIAA, El-Sayyad GS, Labib S, Abdeltwab E, El-Okr MM (2018) Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40:141–151. https://doi.org/10.1016/J.PARTIC.2017.12.001

    Article  CAS  Google Scholar 

  19. Badmus SO, Amusa HK, Oyehan TA, Saleh TA (2021) Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques. Environ Sci Pollut Res 28(44):62085–62104. https://doi.org/10.1007/S11356-021-16483-W

    Article  CAS  Google Scholar 

  20. Baer DR (2011) Surface Characterization of nanoparticles: critical needs and significant challenges. J Surf Anal 17:163–169. https://doi.org/10.1384/JSA.17.163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bano I, Skalickova S, Arbab S, Urbankova L, Horky P (2022) Toxicological effects of nanoselenium in animals. J Anim Sci Biotechnol 13(1):1–13. https://doi.org/10.1186/S40104-022-00722-2

    Article  Google Scholar 

  22. Bărbieru O-G, Dimitriu L, Călin M, Răut I, Constantinescu-Aruxandei D, Oancea F (2019) Plant biostimulants based on selenium nanoparticles biosynthesized by Trichoderma strains. mdpi.com 29:787–799. https://doi.org/10.3390/proceedings2019029095

  23. Barnaby SN, Frayne SH, Fath KR, Banerjee IA (2011) Growth of Se nanoparticles on Kinetin assemblies and their biocompatibility studies 9:313–334.https://doi.org/10.1080/1539445X.2010.516302

  24. Bartosiak M, Giersz J, Jankowski K (2019) Analytical monitoring of selenium nanoparticles green synthesis using photochemical vapor generation coupled with MIP-OES and UV–Vis spectrophotometry. Microchem J 145:1169–1175. https://doi.org/10.1016/J.MICROC.2018.12.024

    Article  CAS  Google Scholar 

  25. Behbahani SR, Iranbakhsh A, Ebadi M, Majd A, Ardebili ZO (2020) Red elemental selenium nanoparticles mediated substantial variations in growth, tissue differentiation, metabolism, gene transcription, epigenetic cytosine DNA methylation, and callogenesis in bittermelon (Momordica charantia); an in vitro experiment. PLoS ONE 15:e0235556. https://doi.org/10.1371/JOURNAL.PONE.0235556

    Article  Google Scholar 

  26. Berger LI (2020) Semiconductor materials: definition, history, systematization, semiconductor materials. CRC Press. https://doi.org/10.1201/9780138739966-1/SEMICONDUCTOR-MATERIALS-DEFINITION-HISTORY-SYSTEMATIZATION-LEV-BERGER

    Article  Google Scholar 

  27. Bhavya G, Belorkar SA, Mythili R, Geetha N, Shetty HS, Udikeri SS, Jogaiah S (2021) Remediation of emerging environmental pollutants: a review based on advances in the uses of eco-friendly biofabricated nanomaterials. Chemosphere 275:129975. https://doi.org/10.1016/J.CHEMOSPHERE.2021.129975

    Article  CAS  PubMed  Google Scholar 

  28. Bisht N, Phalswal P, Khanna PK (2022) Selenium nanoparticles: a review on synthesis and biomedical applications. Mater Adv 3:1415–1431. https://doi.org/10.1039/D1MA00639H

    Article  CAS  Google Scholar 

  29. Butler CS, Debieux CM, Dridge EJ, Splatt P, Wright M (2012) Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Biochem Soc Trans 40:1239–1243. https://doi.org/10.1042/BST20120087

    Article  CAS  PubMed  Google Scholar 

  30. Chakraborty N, Banerjee J, Chakraborty P, Banerjee A, Chanda S, Ray K, Acharya K, Sarkar J (2022) Green synthesis of copper/copper oxide nanoparticles and their applications: a review. Green Chem Lett Rev 15:185–213. https://doi.org/10.1080/17518253.2022.2025916

    Article  CAS  Google Scholar 

  31. Chatterjee A, Mridha D, Banerjee J, Chanda S, Ray K, Acharya K, Das M, Roychowdhury T, Sarkar J (2021) Green synthesis of iron oxide nanoparticles and their ameliorative effect on arsenic stress relief in Oryza sativa seedlings. Biocatal Agric Biotechnol 38:102207. https://doi.org/10.1016/J.BCAB.2021.102207

    Article  CAS  Google Scholar 

  32. Chaudhary S, Mehta SK (2014) Selenium nanomaterials: applications in electronics, catalysis and sensors. J Nanosci Nanotechnol 14:1658–1674. https://doi.org/10.1166/JNN.2014.9128

    Article  CAS  PubMed  Google Scholar 

  33. Chen N, Yao P, Zhang W, Zhang Y, Xin N, Wei H, Zhang T, Zhao C (2022) Selenium nanoparticles: enhanced nutrition and beyond.https://doi.org/10.1080/10408398.2022.2101093

  34. Chen T, Wong YS, Zheng W, Bai Y, Huang L (2008) Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf B Biointerfaces 67:26–31. https://doi.org/10.1016/J.COLSURFB.2008.07.010

    Article  CAS  PubMed  Google Scholar 

  35. Cherin P, Unger P (2002) The crystal structure of trigonal selenium. Inorg Chem 6:1589–1591. https://doi.org/10.1021/IC50054A037

    Article  Google Scholar 

  36. Chicea D (2014) using AFM topography measurements in nanoparticle sizing. Rom Rep Phys 66:778–787

    Google Scholar 

  37. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668. https://doi.org/10.1021/nl052396o

    Article  CAS  PubMed  Google Scholar 

  38. Choi Y, Lee SY (2020) Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages. Nat Rev Chem 4(12):638–656. https://doi.org/10.1038/s41570-020-00221-w

    Article  CAS  PubMed  Google Scholar 

  39. Cittrarasu V, Kaliannan D, Dharman K, Maluventhen V, Easwaran M, Liu WC, Balasubramanian B, Arumugam M (2021) Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci Rep 11(1):1–15. https://doi.org/10.1038/s41598-020-80327-9

    Article  CAS  Google Scholar 

  40. Collins K, Kobayashi R, Greider CW (1995) Purification of tetrahymena telomerase and cloning of genes encoding the two protein components of the enzyme. Cell 81:677–686. https://doi.org/10.1016/0092-8674(95)90529-4

    Article  CAS  PubMed  Google Scholar 

  41. Cremonini E, Zonaro E, Donini M, Lampis S, Boaretti M, Dusi S, Melotti P, Lleo MM, Vallini G (2016) Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microb Biotechnol 9:758–771. https://doi.org/10.1111/1751-7915.12374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Cuevas R, Durán N, Diez MC, Tortella GR, Rubilar O (2015) extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from Chilean Forests. J Nanomater 2015:1–7. https://doi.org/10.1155/2015/789089

    Article  CAS  Google Scholar 

  43. Cui D, Liang T, Sun L, Meng L, Yang C, Wang L, Liang T, Li Q (2018) Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharm Biol 56:528–534. https://doi.org/10.1080/13880209.2018.1510974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Cui YH, Li LL, Zhou NQ, Liu JH, Huang Q, Wang HJ, Tian J, Yu HQ (2016) In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzyme Microb Technol 95:185–191. https://doi.org/10.1016/J.ENZMICTEC.2016.08.017

    Article  CAS  PubMed  Google Scholar 

  45. Cuong HN, Pansambal S, Ghotekar S, Oza R, Thanh Hai NT, Viet NM, Nguyen VH (2022) New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: a review. Environ Res 203:111858. https://doi.org/10.1016/J.ENVRES.2021.111858

    Article  CAS  PubMed  Google Scholar 

  46. Dar MA, Govindarajan D, Batoo KM, Hadi M, Dar GN (2021) Photovoltaic and supercapacitor performance of SnSe nanoparticles prepared through co-precipitation method37:1396–1409. https://doi.org/10.1080/10667857.2021.195088737

  47. De Moura MR, Mattoso LHC, Zucolotto V (2012) Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 109:520–524. https://doi.org/10.1016/J.JFOODENG.2011.10.030

    Article  Google Scholar 

  48. Debieux CM, Dridge EJ, Mueller CM, Splatt P, Paszkiewicz K, Knight I, Florance H, Love J, Titball RW, Lewis RJ, Richardson DJ, Butler CS (2011) A bacterial process for selenium nanosphere assembly. Proc Natl Acad Sci U S A 108:13480–13485. https://doi.org/10.1073/PNAS.1105959108/-/DCSUPPLEMENTAL

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Deshpande LM, Kapadnis BP, Chopade BA (1993) Metal resistance in Acinetobacter and its relation to beta-lactamase production. Biometals 6:55–59. https://doi.org/10.1007/BF00154233

    Article  CAS  PubMed  Google Scholar 

  50. Devatha CP, Thalla AK (2018) Chapter 7 - Green synthesis of nanomaterials, in: Mohan Bhagyaraj S, Oluwafemi OS, Kalarikkal N, Thomas SBT-S of I.N. (Eds.), Micro and Nano Technologies. Woodhead Publishing, pp. 169–184. https://doi.org/10.1016/B978-0-08-101975-7.00007-5

  51. Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 9:1–11. https://doi.org/10.1186/1475-2859-9-52/FIGURES/10

    Article  Google Scholar 

  52. Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications32:49–73. https://doi.org/10.3109/07388551.2010.550568

  53. Djanaguiraman M, Belliraj N, Bossmann SH, Prasad PVV (2018) High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega 3:2479–2491. https://doi.org/10.1021/ACSOMEGA.7B01934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Dobias J, Suvorova EI, Bernier-Latmani R (2011) Role of proteins in controlling selenium nanoparticle size. Nanotechnology 22:195605. https://doi.org/10.1088/0957-4484/22/19/195605

    Article  CAS  PubMed  Google Scholar 

  55. Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525–531. https://doi.org/10.1007/S10725-012-9735-X/FIGURES/4

    Article  CAS  Google Scholar 

  56. El-Batal AI, Mosallam FM, Ghorab MM, Hanora A, Gobara M, Baraka A, Elsayed MA, Pal K, Fathy RM, Abd Elkodous M, El-Sayyad GS (2020) Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells. Int J Biol Macromol 156:1584–1599. https://doi.org/10.1016/J.IJBIOMAC.2019.11.210

    Article  CAS  PubMed  Google Scholar 

  57. El-Saadony MT, Saad AM, Najjar AA, Alzahrani SO, Alkhatib FM, Shafi ME, Selem E, Desoky ESM, Fouda SEE, El-Tahan AM, Hassan MAA (2021) The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi J Biol Sci 28:4461–4471. https://doi.org/10.1016/j.sjbs.2021.04.043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Estevam EC, Griffin S, Nasim MJ, Denezhkin P, Schneider R, Lilischkis R, Dominguez-Alvarez E, Witek K, Latacz G, Keck C, Schäfer KH, Kieć-Kononowicz K, Handzlik J, Jacob C (2017) Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise? J Hazard Mater 324:22–30. https://doi.org/10.1016/J.JHAZMAT.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  59. Ezhuthupurakkal PB, Polaki LR, Suyavaran A, Subastri A, Sujatha V, Thirunavukkarasu C (2017) Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding. Mater Sci Eng C Mater Biol Appl 74:597–608. https://doi.org/10.1016/J.MSEC.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  60. Maiyo F, Singh M (2017) Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine (Lond) 12:1075–1089. https://doi.org/10.2217/NNM-2017-0024

    Article  CAS  PubMed  Google Scholar 

  61. Fan D, Li L, Li Z, Zhang Y, Ma X, Wu L, Zhang H, Guo F (2020) Biosynthesis of selenium nanoparticles and their protective, antioxidative effects in streptozotocin induced diabetic rats. Sci Technol Adv Mater 21:505–514. https://doi.org/10.1080/14686996.2020.1788907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Fanoro OT, Oluwafemi OS (2020) Bactericidal antibacterial mechanism of plant synthesized silver, gold and bimetallic nanoparticles. Pharmaceutics 12:1–20. https://doi.org/10.3390/PHARMACEUTICS12111044

    Article  Google Scholar 

  63. Faramarzi S, Anzabi Y, Jafarizadeh-Malmiri H (2020) Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae—fabrication and characterization. Arch Microbiol 202:1203–1209. https://doi.org/10.1007/S00203-020-01831-0/TABLES/3

    Article  CAS  PubMed  Google Scholar 

  64. Fardsadegh B, Jafarizadeh-Malmiri H (2019) Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their In vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Process Synthesis 8:399–407. https://doi.org/10.1515/GPS-2019-0007

    Article  CAS  Google Scholar 

  65. Fardsadegh B, Vaghari H, Mohammad-Jafari R, Najian Y, Jafarizadeh-Malmiri H (2019) Biosynthesis, characterization and antimicrobial activities assessment of fabricated selenium nanoparticles using Pelargonium zonale leaf extract. Green Process Synthesis 8:191–198. https://doi.org/10.1515/GPS-2018-0060/MACHINEREADABLECITATION/RIS

    Article  CAS  Google Scholar 

  66. Fernández-Llamosas H, Castro L, Blázquez ML, Díaz E, Carmona M (2017) Speeding up bioproduction of selenium nanoparticles by using Vibrio natriegens as microbial factory. Sci Rep 7(1):1–9. https://doi.org/10.1038/s41598-017-16252-1

    Article  CAS  Google Scholar 

  67. Fernández-Llamosas H, Castro L, Blázquez ML, Díaz E, Carmona M (2016) Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB Microb Cell Fact 15:1–10. https://doi.org/10.1186/S12934-016-0510-Y/FIGURES/6

    Article  Google Scholar 

  68. Ferro C, Florindo HF, Santos HA (2021) Selenium nanoparticles for biomedical applications: from development and characterization to therapeutics. Adv Healthc Mater 10:2100598. https://doi.org/10.1002/ADHM.202100598

    Article  CAS  Google Scholar 

  69. Fesharaki PJ, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, Shahverdi AR (2010) Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol 41:461–466. https://doi.org/10.1590/S1517-83822010000200028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Filipović N, Ušjak D, Milenković MT, Zheng K, Liverani L, Boccaccini AR, Stevanović MM (2021) Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Front Bioeng Biotechnol 8:1591. https://doi.org/10.3389/FBIOE.2020.624621/BIBTEX

    Article  Google Scholar 

  71. Forootanfar H, Adeli-Sardou M, Nikkhoo M, Mehrabani M, Amir-Heidari B, Shahverdi AR, Shakibaie M (2014) Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J Trace Elem Med Biol 28:75–79. https://doi.org/10.1016/J.JTEMB.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  72. Gangadoo S, Dinev I, Chapman J, Hughes RJ, Van TTH, Moore RJ, Stanley D (2018) Selenium nanoparticles in poultry feed modify gut microbiota and increase abundance of Faecalibacterium prausnitzii. Appl Microbiol Biotechnol 102:1455–1466. https://doi.org/10.1007/S00253-017-8688-4

    Article  CAS  PubMed  Google Scholar 

  73. Gangadoo, S., Stanley, D., Hughes, R.J., Moore, R.J., Chapman, J., 2017. The synthesis and characterisation of highly stable and reproducible selenium nanoparticles47:1568–1576. https://doi.org/10.1080/24701556.2017.135761147

  74. Garza-García JJO, Hernández-Díaz JA, Zamudio-Ojeda A, León-Morales JM, Guerrero-Guzmán A, Sánchez-Chiprés DR, López-Velázquez JC, García-Morales S (2021) The role of selenium nanoparticles in agriculture and food technology. Biol Trace Elem Res 2021:1–21. https://doi.org/10.1007/S12011-021-02847-3

    Article  Google Scholar 

  75. Gates B, Yin Y, Xia Y (2000) A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10–30 nm. J Am Chem Soc 122:12582–12583. https://doi.org/10.1021/JA002608D/SUPPL_FILE/JA002608D_S.PDF

    Article  CAS  Google Scholar 

  76. Ge JP, Xu S, Liu LP, Li YD (2006) A positive-microemulsion method for preparing nearly uniform ag2se nanoparticles at low temperature. Chem-A Eur J 12:3672–3677. https://doi.org/10.1002/CHEM.200600006

    Article  CAS  Google Scholar 

  77. Geoffrion LD, Hesabizadeh T, Medina-Cruz D, Kusper M, Taylor P, Vernet-Crua A, Chen J, Ajo A, Webster TJ, Guisbiers G (2020) Naked selenium nanoparticles for antibacterial and anticancer treatments. ACS Omega. https://doi.org/10.1021/ACSOMEGA.9B03172/ASSET/IMAGES/LARGE/AO9B03172_0001.JPEG

    Article  PubMed Central  PubMed  Google Scholar 

  78. Gerrard TL, Telford JN, Williams HH (1974) Detection of Selenium Deposits in Escherichia coli by Electron Microscopy. J Bacteriol 119:1057. https://doi.org/10.1128/JB.119.3.1057-1060.1974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Ghazal S, Akbari A, Hosseini HA, Sabouri Z, Khatami M, Darroudi M (2021) Sol-gel synthesis of selenium-doped nickel oxide nanoparticles and evaluation of their cytotoxic and photocatalytic properties. Inorg Chem Res 5:37–49. https://doi.org/10.22036/ICR.2020.258236.1094

    Article  Google Scholar 

  80. Ghotekar S, Pagar K, Pansambal S, Murthy HCA, Oza R (2021) Biosynthesis of silver sulfide nanoparticle and its applications. Handbook of Greener Synthesis of Nanomaterials and Compounds: Volume 2: Synthesis at the Macroscale and Nanoscale 191–200. https://doi.org/10.1016/B978-0-12-822446-5.00008-3

  81. Ghotekar Suresh, Ghotekar S (2019) A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J Green Chem 3:187–200. https://doi.org/10.22034/AJGC.2018.140313.1084

    Article  Google Scholar 

  82. Gladyshev VN, Hatfield DL (1999) Selenocysteine-containing proteins in mammals. J Biomed Sci 6(3):151–160. https://doi.org/10.1007/BF02255899

    Article  CAS  PubMed  Google Scholar 

  83. Gudkov SV, Shafeev GA, Glinushkin AP, Shkirin AV, Barmina EV, Rakov II, Simakin AV, Kislov AV, Astashev ME, Vodeneev VA, Kalinitchenko VP (2020) Production and Use of selenium nanoparticles as fertilizers. ACS Omega 5:17767–17774. https://doi.org/10.1021/ACSOMEGA.0C02448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Guisbiers G, Wang Q, Khachatryan E, Mimun LC, Mendoza-Cruz R, Larese-Casanova P, Webster TJ, Nash KL (2016) Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water. Int J Nanomed 11:3731. https://doi.org/10.2147/IJN.S106289

    Article  CAS  Google Scholar 

  85. Gunti L, Dass RS, Kalagatur NK (2019) Phytofabrication of selenium nanoparticles from emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Front Microbiol 10:931. https://doi.org/10.3389/FMICB.2019.00931/BIBTEX

    Article  PubMed Central  PubMed  Google Scholar 

  86. Habibi G, Aleyasin Y (2020) Green synthesis of Se nanoparticles and its effect on salt tolerance of barley plants. Int J Nano Dimension 11:145–157

    CAS  Google Scholar 

  87. Hamza F, Vaidya A, Apte M, Kumar AR, Zinjarde S (2017) Selenium nanoparticle-enriched biomass of Yarrowia lipolytica enhances growth and survival of Artemia salina. Enzyme Microb Technol 106:48–54. https://doi.org/10.1016/J.ENZMICTEC.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  88. Hanson B, Lindblom SD, Loeffler ML, Pilon-Smits EAH (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162:655–662. https://doi.org/10.1111/J.1469-8137.2004.01067.X

    Article  CAS  PubMed  Google Scholar 

  89. Hasan S Saif, Singh S, Parikh RY, Dharne M, Hasan Syed Saif, Dharne MS, Patole MS, Prasad BLV, Shouche YS (2008) bacterial synthesis of copper/copper oxide nanoparticles lipid nanoparticles View project Filaria repository project View project bacterial synthesis of copper/copper oxide nanoparticles. Article J Nanosci Nanotechnol 8:1–6. https://doi.org/10.1166/jnn.2008.095

    Article  CAS  Google Scholar 

  90. Hashem AH, Salem SS (2022) Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: antimicrobial and anticancer activity. Biotechnol J 17:2100432. https://doi.org/10.1002/BIOT.202100432

    Article  CAS  Google Scholar 

  91. Hassanien R, Abed-Elmageed AAI, Husein DZ (2019) Eco-Friendly approach to synthesize selenium nanoparticles: photocatalytic degradation of sunset yellow azo dye and anticancer activity. ChemistrySelect 4:9018–9026. https://doi.org/10.1002/SLCT.201901267

    Article  CAS  Google Scholar 

  92. Henglein A (1993) Physichochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471. https://doi.org/10.1021/j100123a004

    Article  CAS  Google Scholar 

  93. Hnain A, Brooks J, Lefebvre DD (2013) The synthesis of elemental selenium particles by Synechococcus leopoliensis. Appl Microbiol Biotechnol 97(24):10511–10519. https://doi.org/10.1007/S00253-013-5304-0

    Article  CAS  PubMed  Google Scholar 

  94. Holmannova D, Borsky P, Svadlakova T, Borska L, Fiala Z (2022) Carbon nanoparticles and their biomedical applications. Appl Sci 12:7865. https://doi.org/10.3390/APP12157865

    Article  CAS  Google Scholar 

  95. Hong YJ, Kang YC (2017) Selenium-impregnated hollow carbon microspheres as efficient cathode materials for lithium-selenium batteries. Carbon N Y 111:198–206. https://doi.org/10.1016/J.CARBON.2016.09.069

    Article  CAS  Google Scholar 

  96. Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Nanomed Nanotechnol Pantidos Horsfall 5:1–10. https://doi.org/10.4172/2157-7439.1000233

    Article  CAS  Google Scholar 

  97. Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, Baron M, Melcova M, Opatrilova R, Zidkova J, Bjørklund G, Sochor J, Kizek R (2018) Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomed 13:2107. https://doi.org/10.2147/IJN.S157541

    Article  CAS  Google Scholar 

  98. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441. https://doi.org/10.1037/H0071325

    Article  Google Scholar 

  99. Hu H, Li G, Wang L, Watts J, Combs GF, Lü J (2008) Methylseleninic acid enhances taxane drug efficacy against human prostate cancer and down-regulates antiapoptotic proteins Bcl-XL and survivin. Clin Cancer Res 14:1150–1158. https://doi.org/10.1158/1078-0432.CCR-07-4037

    Article  CAS  PubMed  Google Scholar 

  100. Hu T, Li H, Li J, Zhao G, Wu W, Liu L, Wang Q, Guo Y (2018) Absorption and bio-transformation of selenium nanoparticles by wheat seedlings (Triticumaestivum L.). Front Plant Sci 9:597. https://doi.org/10.3389/FPLS.2018.00597/BIBTEX

    Article  PubMed Central  PubMed  Google Scholar 

  101. Hunter WJ, Manter DK (2008) Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis. Curr Microbiol 57:83–88. https://doi.org/10.1007/S00284-008-9160-6/FIGURES/4

    Article  CAS  PubMed  Google Scholar 

  102. Hussain I, Singh NB, Singh A, Singh H, Singh SC (2015) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38(4):545–560. https://doi.org/10.1007/S10529-015-2026-7

    Article  PubMed  Google Scholar 

  103. Ikram M, Javed B, Raja NI, Mashwani ZUR (2021) Biomedical potential of plant-based selenium nanoparticles: a comprehensive review on therapeutic and mechanistic aspects. Int J Nanomed 16:249–268. https://doi.org/10.2147/IJN.S295053

    Article  Google Scholar 

  104. Jacob J, Haponiuk JT, Thomas S, Gopi S (2018) Biopolymer based nanomaterials in drug delivery systems: A review. Mater Today Chem 9:43–55. https://doi.org/10.1016/J.MTCHEM.2018.05.002

    Article  CAS  Google Scholar 

  105. Jadoun S, Arif R, Jangid NK, Meena RK (2021) Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01074-x

    Article  Google Scholar 

  106. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol 53:101174. https://doi.org/10.1016/j.jddst.2019.101174

    Article  CAS  Google Scholar 

  107. Jamróz E, Kopel P, Juszczak L, Kawecka A, Bytesnikova Z, Milosavljevic V, Makarewicz M (2019) Development of furcellaran-gelatin films with Se-AgNPs as an active packaging system for extension of mini kiwi shelf life. Food Packag Shelf Life 21:100339. https://doi.org/10.1016/J.FPSL.2019.100339

    Article  Google Scholar 

  108. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89. https://doi.org/10.1007/s11051-008-9446-4

    Article  CAS  Google Scholar 

  109. Jin Y, Cai L, Yang Q, Luo Z, Liang L, Liang Y, Wu B, Ding L, Zhang D, Xu X, Zhang L, Zhou F (2020) Anti-leukemia activities of selenium nanoparticles embedded in nanotube consisted of triple-helix β-d-glucan. Carbohydr Polym 240:116329. https://doi.org/10.1016/J.CARBPOL.2020.116329

    Article  CAS  PubMed  Google Scholar 

  110. Kalpana VN, Devi Rajeswari V (2017) Biosynthesis of metal and metal oxide nanoparticles for food packaging and preservation: a green expertise, in: Food Biosynthesis. Academic Press, pp. 293–316. https://doi.org/10.1016/B978-0-12-811372-1.00010-5

  111. Kamnev AA, Mamchenkova PV, Dyatlova YA, Tugarova AV (2017) FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles. J Mol Struct 1140:106–112. https://doi.org/10.1016/J.MOLSTRUC.2016.12.003

    Article  CAS  Google Scholar 

  112. Kanchi S, Inamuddin, Khan A (2020) Biogenic synthesis of selenium nanoparticles with edible mushroom extract: Evaluation of cytotoxicity on prostate cancer cell lines and their antioxidant, and antibacterial activity. Biointerface Res Appl Chem 10:6629–6639. https://doi.org/10.33263/BRIAC106.66296639

    Article  Google Scholar 

  113. Kashid Y, Ghotekar S, Bilal M, Pansambal S, Oza R, Varma RS, Nguyen VH, Ananda Murthy HC, Mane D (2022) Bio-inspired sustainable synthesis of silver chloride nanoparticles and their prominent applications. J Indian Chem Soc 99:100335. https://doi.org/10.1016/J.JICS.2021.100335

    Article  CAS  Google Scholar 

  114. Kaur G, Iqbal M, Bakshi MS (2009) Biomineralization of fine selenium crystalline rods and amorphous spheres. J Phys Chem C 113:13670–13676. https://doi.org/10.1021/JP903685G/SUPPL_FILE/JP903685G_SI_001.PDF

    Article  CAS  Google Scholar 

  115. Kessi J (2006) Enzymic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus. Microbiology (N Y) 152:731–743. https://doi.org/10.1099/MIC.0.28240-0/CITE/REFWORKS

    Article  CAS  Google Scholar 

  116. Kessi J, Hanselmann KW (2004) Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 279:50662–50669

    Article  CAS  PubMed  Google Scholar 

  117. Khalil I, Yehye WA, Etxeberria AE, Alhadi AA, Dezfooli SM, Julkapli NBM, Basirun WJ, Seyfoddin A (2020) Nanoantioxidants: recent trends in antioxidant delivery applications. Antioxidants 9. https://doi.org/10.3390/ANTIOX9010024

  118. Khan R, Xing Y, Wang J, Huang L, Zhu J, Zhu X, Wu Y (2021) Core-shell SnSe@TiO2/C heterostructure high-performance anode for Na-ion batteries. J Alloys Compd 880:160469. https://doi.org/10.1016/J.JALLCOM.2021.160469

    Article  CAS  Google Scholar 

  119. Khandsuren B, Prokisch J (2021) Preparation of red and grey elemental selenium for food fortification. Acta Aliment 50:289–298. https://doi.org/10.1556/066.2020.00332

    Article  CAS  Google Scholar 

  120. Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A (2018) Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 123:505–526. https://doi.org/10.1016/J.MICPATH.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  121. Khosravi-Darani K, Esmaeili S, Pourahmad R, Komeili R (2012) An experimental design for production of selenium-enriched yeast. World Appl Sci J 19:31–37. https://doi.org/10.5829/idosi.wasj.2012.19.01.2634

    Article  CAS  Google Scholar 

  122. Khubulava S, Chichiveishvili N, Khodeli N, Phichkhaia G, Mamniashvili G (2018) Preparation of selenium nanoparticles with mechano-sonochemical methods. Asian J Pharmaceutics (AJP) 12:619. https://doi.org/10.22377/AJP.V12I02.2405

    Article  Google Scholar 

  123. Kieliszek M, Błazejak S (2013) Selenium: Significance, and outlook for supplementation. Nutrition 29:713–718. https://doi.org/10.1016/J.NUT.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  124. Kim JJ, Ha S, Kim L, Kato Y, Wang Y, Okutani C, Wang H, Wang C, Fukuda K, Lee S, Yokota T, Kwon OS, Someya T (2022) Antimicrobial second skin using copper nanomesh. Proc Natl Acad Sci U S A 119:e2200830119. https://doi.org/10.1073/PNAS.2200830119/SUPPL_FILE/PNAS.2200830119.SM03.MP4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Kochemirovskaia SV, Lebedev DV, Fogel AA, Povolotskiy AV, Kochemirovsky VA, Tver’yanovich YS (2021) Properties of selenium colloidal solution obtained via laser ablation and a subsequent method for producing highly dispersed CuInSe2. JOM 73:646–654. https://doi.org/10.1007/S11837-020-04407-X/TABLES/3

    Article  CAS  Google Scholar 

  126. Kokila K, Elavarasan N, Sujatha V (2017) Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New J Chem 41:7481–7490. https://doi.org/10.1039/C7NJ01124E

    Article  CAS  Google Scholar 

  127. Kora AJ, Rastogi L (2016) Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: an approach for conversion of selenite. J Environ Manage 181:231–236. https://doi.org/10.1016/J.JENVMAN.2016.06.029

    Article  CAS  PubMed  Google Scholar 

  128. Korde P, Ghotekar S, Pagar T, Pansambal S, Oza R, Mane D (2020) plant extract assisted eco-benevolent synthesis of selenium nanoparticles- a review on plant parts involved, characterization and their recent applications. J Chem Rev 2:157–168. https://doi.org/10.22034/JCR.2020.106601

    Article  CAS  Google Scholar 

  129. Kumar M, Dwivedi C, Shah CP, Singh K, Bajaj PN (2011) An organic acid-induced synthesis and characterization of selenium nanoparticles. J Nanotechnol. https://doi.org/10.1155/2011/651971

    Article  Google Scholar 

  130. Kumar N, Krishnani KK, Gupta SK, Singh NP (2017) Selenium nanoparticles enhanced thermal tolerance and maintain cellular stress protection of Pangasius hypophthalmus reared under lead and high temperature. Respir Physiol Neurobiol 246:107–116. https://doi.org/10.1016/J.RESP.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  131. Kuroda M, Notaguchi E, Sato A, Yoshioka M, Hasegawa A, Kagami T, Narita T, Yamashita M, Sei K, Soda S, Ike M (2011) Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions. J Biosci Bioeng 112:259–264. https://doi.org/10.1016/J.JBIOSC.2011.05.012

    Article  CAS  PubMed  Google Scholar 

  132. Lampis S, Zonaro E, Bertolini C, Cecconi D, Monti F, Micaroni M, Turner RJ, Butler CS, Vallini G (2017) Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: novel clues on the route to bacterial biogenesis of selenium nanoparticles. J Hazard Mater 324:3–14. https://doi.org/10.1016/J.JHAZMAT.2016.02.035

    Article  CAS  PubMed  Google Scholar 

  133. Lazard M, Dauplais M, Blanquet S, Plateau P (2017) Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic cells. Biomol Concepts 8:93–104. https://doi.org/10.1515/BMC-2017-0007/ASSET/GRAPHIC/J_BMC-2017-0007_FIG_002.JPG

    Article  CAS  PubMed  Google Scholar 

  134. Lee KH, Jeong D (2012) Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: The selenium paradox (Review). Mol Med Rep 5:299–304. https://doi.org/10.3892/MMR.2011.651/HTML

    Article  CAS  PubMed  Google Scholar 

  135. Lenz M, Kolvenbach B, Gygax B, Moes S, Corvini PFX (2011) Shedding light on selenium biomineralization: proteins associated with bionanominerals. Appl Environ Microbiol 77:4676. https://doi.org/10.1128/AEM.01713-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Lesnichaya MV, Sukhov BG (2021) Synthesis of selenium sulfide nanoparticles in polysaccharide arabinogalactan and starch matrices. Nanobiotechnol Rep 16(2):202–210. https://doi.org/10.1134/S2635167621020099

    Article  CAS  Google Scholar 

  137. Lian S, Diko CS, Yan Y, Li Z, Zhang H, Ma Q, Qu Y (2019) Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech 9(6):1–8. https://doi.org/10.1007/S13205-019-1748-Y

    Article  Google Scholar 

  138. Liang T, Qiu X, Ye X, Liu Y, Li Z, Tian B, Yan D (2020) Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. 3 Biotech 10. https://doi.org/10.1007/S13205-019-1999-7

  139. Liang X, Perez MAMJ, Nwoko KC, Egbers P, Feldmann J, Csetenyi L, Gadd GM (2019) Fungal formation of selenium and tellurium nanoparticles. Appl Microbiol Biotechnol 103:7241. https://doi.org/10.1007/S00253-019-09995-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Liao W, Yu Z, Lin Z, Lei Z, Ning Z, Regenstein JM, Yang J, Ren J (2015) Biofunctionalization of selenium nanoparticle with dictyophora indusiata polysaccharide and its antiproliferative activity through death-receptor and mitochondria-mediated apoptotic pathways. Sci Rep 5. https://doi.org/10.1038/SREP18629

  141. Lin ZH, Lin FC, Wang CRC (2004) Observation in the growth of selenium nanoparticles. J Chin Chem Soc 51:239–242. https://doi.org/10.1002/JCCS.200400038

    Article  CAS  Google Scholar 

  142. Liu G, Yang X, Zhang J, Liang L, Miao F, Ji T, Ye Z, Chu M, Ren J, Xu X (2021) Synthesis, stability and anti-fatigue activity of selenium nanoparticles stabilized by Lycium barbarum polysaccharides. Int J Biol Macromol 179:418–428. https://doi.org/10.1016/J.IJBIOMAC.2021.03.018

    Article  CAS  PubMed  Google Scholar 

  143. Liu Y, Zeng S, Liu Y, Wu W, Shen Y, Zhang L, Li C, Chen H, Liu A, Shen L, Hu B, Wang C (2018) Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int J Biol Macromol 114:632–639. https://doi.org/10.1016/J.IJBIOMAC.2018.03.161

    Article  CAS  PubMed  Google Scholar 

  144. Loshchinina EA, Vetchinkina EP, Kupryashina MA, Kursky VF, Nikitina VE (2018) Nanoparticles synthesis by Agaricus soil basidiomycetes. J Biosci Bioeng 126:44–52. https://doi.org/10.1016/j.jbiosc.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  145. Luo P, Zuo R, Chen L (2010) The preparation of CuInSe2 films by combustion method and non-vacuum spin-coating process. Sol Energy Mater Sol Cells 94:1146–1151. https://doi.org/10.1016/J.SOLMAT.2010.03.001

    Article  CAS  Google Scholar 

  146. MacFarquhar JK, Broussard DL, Melstrom P, Hutchinson R, Wolkin A, Martin C, Burk RF, Dunn JR, Green AL, Hammond R, Schaffner W, Jones TF (2010) Acute selenium toxicity associated with a dietary supplement. Arch Intern Med 170:256–261. https://doi.org/10.1001/ARCHINTERNMED.2009.495

    Article  PubMed Central  PubMed  Google Scholar 

  147. Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK (2016) Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci Total Environ 573:1089–1102. https://doi.org/10.1016/J.SCITOTENV.2016.08.120

    Article  CAS  PubMed  Google Scholar 

  148. Mahmoodi SR, Bayati M, Hosseinirad S, Foroumadi A, Gilani K, Rezayat SM (2013) AC electrokinetic manipulation of selenium nanoparticles for potential nanosensor applications. Mater Res Bull 48:1262–1267. https://doi.org/10.1016/J.MATERRESBULL.2012.12.026

    Article  CAS  Google Scholar 

  149. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) ”Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6:35–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Marinescu G, Gabriela Stoicescu A, Teodorof L (2011) Industrial nutrient medium use for yeast selenium preparation. AUDJG-Food Technology 35:45–53

    CAS  Google Scholar 

  151. Matussin S, Harunsani MH, Tan AL, Khan MM (2020) Plant-extract-mediated SnO2 nanoparticles: synthesis and applications. ACS Sustain Chem Eng 8:3040–3054. https://doi.org/10.1021/ACSSUSCHEMENG.9B06398/ASSET/IMAGES/MEDIUM/SC9B06398_0016.GIF

    Article  CAS  Google Scholar 

  152. Mehrotra P (2016) Biosensors and their applications – a review. J Oral Biol Craniofac Res 6:153–159. https://doi.org/10.1016/J.JOBCR.2015.12.002

    Article  PubMed Central  PubMed  Google Scholar 

  153. Mellinas C, Jiménez A, del Carmen Garrigós M (2019) Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L. bean shell extract. Molecules 24:4048. https://doi.org/10.3390/MOLECULES24224048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Menon S, Shrudhi SD, Agarwal H, Shanmugam VK (2019) Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid Interface Sci Commun 29:1–8. https://doi.org/10.1016/J.COLCOM.2018.12.004

    Article  CAS  Google Scholar 

  155. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556. https://doi.org/10.1016/J.PMATSCI.2005.08.003

    Article  CAS  Google Scholar 

  156. Milovanović I, Brčeski I, Stajić M, Korać A, Vukojević J, Knežević A (2014) Potential of pleurotus ostreatus mycelium for selenium absorption. Sci World J 2014. https://doi.org/10.1155/2014/681834

  157. Moges FD, Hamdi H, Al-Barty A, Zaid AA, Sundaray M, Parashar SKS, Gubale AG, Das B (2022) Effects of selenium nanoparticle on the growth performance and nutritional quality in Nile Tilapia, Oreochromis niloticus. PLoS One 17:e0268348. https://doi.org/10.1371/JOURNAL.PONE.0268348

    Article  Google Scholar 

  158. Mollania N, Tayebee R, Narenji-Sani F (2016) An environmentally benign method for the biosynthesis of stable selenium nanoparticles. Res Chem Intermed 5:4253–4271. https://doi.org/10.1007/S11164-015-2272-2

    Article  Google Scholar 

  159. Morales-Espinoza MC, Cadenas-Pliego G, Pérez-Alvarez M, Hernández-Fuentes AD, Fuente MC de la, Benavides-Mendoza A, Valdés-Reyna J, Juárez-Maldonado A (2019) Se Nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under NaCl stress. Molecules 24. https://doi.org/10.3390/MOLECULES24173030

  160. Mosallam FM, El-Sayyad GS, Fathy RM, El-Batal AI (2018) Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb Pathog 122:108–116. https://doi.org/10.1016/j.micpath.2018.06.013

    Article  CAS  PubMed  Google Scholar 

  161. Mourdikoudis S, Pallares RM, Thanh NTK (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. https://doi.org/10.1039/c8nr02278j

    Article  PubMed  Google Scholar 

  162. Mridha D, Paul I, De A, Ray I, Das A, Joardar M, Chowdhury NR, Bhadoria PBS, Roychowdhury T (2021) Rice seed (IR64) priming with potassium humate for improvement of seed germination, seedling growth and antioxidant defense system under arsenic stress. Ecotoxicol Environ Saf 219:112313. https://doi.org/10.1016/J.ECOENV.2021.112313

    Article  CAS  PubMed  Google Scholar 

  163. Mridha D, Ray I, Sarkar J, De A, Joardar M, Das A, Chowdhury NR, Acharya K, Roychowdhury T (2022) Effect of sulfate application on inhibition of arsenic bioaccumulation in rice (Oryza sativa L.) with consequent health risk assessment of cooked rice arsenic on human: A pot to plate study. Environ Pollut 293:118561. https://doi.org/10.1016/J.ENVPOL.2021.118561

    Article  CAS  PubMed  Google Scholar 

  164. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519. https://doi.org/10.1021/nl0155274

    Article  CAS  Google Scholar 

  165. Mulla NA, Otari SV, Bohara RA, Yadav HM, Pawar SH (2020) Rapid and size-controlled biosynthesis of cytocompatible selenium nanoparticles by Azadirachta indica leaves extract for antibacterial activity. Mater Lett 264:127353. https://doi.org/10.1016/J.MATLET.2020.127353

    Article  CAS  Google Scholar 

  166. Muthoosamy K, Geetha Bai R, Abubakar IB, Sudheer SM, Lim HN, Loh HS, Huang NM, Chia CH, Manickam S (2015) Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy. Int J Nanomedicine 10:1505–1519. https://doi.org/10.2147/IJN.S75213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Nabi F, Arain MA, Hassan F, Umar M, Rajput N, Alagawany M, Syed SF, Soomro J, Somroo F, Liu J (2020) Nutraceutical role of selenium nanoparticles in poultry nutrition: a review. Worlds Poult Sci J 76:459–471. https://doi.org/10.1080/00439339.2020.1789535

    Article  Google Scholar 

  168. Nandini B, Hariprasad P, Prakash HS, Shetty HS, Geetha N (2017) Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci Rep 7(1):1–11. https://doi.org/10.1038/s41598-017-02737-6

    Article  CAS  Google Scholar 

  169. Nasrollahzadeh M, Sajadi SM, Issaabadi Z, Sajjadi M (2019) Biological Sources Used in Green Nanotechnology. Interface Sci Technol 28:81–111. https://doi.org/10.1016/B978-0-12-813586-0.00003-1

    Article  CAS  Google Scholar 

  170. Nayak V, Singh KR, Singh AK, Singh RP (2021) Potentialities of selenium nanoparticles in biomedical science. New J Chem 45:2849–2878. https://doi.org/10.1039/D0NJ05884J

    Article  CAS  Google Scholar 

  171. Nazerieh H, Ardebili ZO, Iranbakhsh A (2018) Potential benefits and toxicity of nanoselenium and nitric oxide in peppermint. Acta Agric Slov 111:357–368. https://doi.org/10.14720/aas.2018.111.2.11

  172. Ndwandwe BK, Malinga SP, Kayitesi E, Dlamini BC (2021) Solvothermal synthesis of selenium nanoparticles with polygonal-like nanostructure and antibacterial potential. Mater Lett 304:130619. https://doi.org/10.1016/J.MATLET.2021.130619

    Article  CAS  Google Scholar 

  173. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147–1235. https://doi.org/10.1039/C2CS35265F

    Article  CAS  PubMed  Google Scholar 

  174. Nogueira CW, Zeni G, Rocha JBT (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104:6255–6285. https://doi.org/10.1021/CR0406559

    Article  CAS  PubMed  Google Scholar 

  175. Nonsuwan P, Puthong S, Palaga T, Muangsin N (2018) Novel organic/inorganic hybrid flower-like structure of selenium nanoparticles stabilized by pullulan derivatives. Carbohydr Polym 184:9–19. https://doi.org/10.1016/J.CARBPOL.2017.12.029

    Article  CAS  PubMed  Google Scholar 

  176. Ojeda JJ, Merroun ML, Tugarova AV, Lampis S, Kamnev AA, Gardiner PHE (2020) Developments in the study and applications of bacterial transformations of selenium species. Crit Rev Biotechnol 40:1250–1264. https://doi.org/10.1080/07388551.2020.1811199

    Article  CAS  PubMed  Google Scholar 

  177. Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria. Appl Environ Microbiol 70:52–60. https://doi.org/10.1128/AEM.70.1.52-60.2004/ASSET/294A5A96-4755-468D-9176-15A4E038122C/ASSETS/GRAPHIC/ZAM0010413770007.JPEG

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Pan S, Lu R, Li H, Lin L, Li L, Xiang J, Chen L, Tang Y (2020) Mutual intercropping affects selenium uptake of eggplant seedlings. Int J Environ Anal Chem 101:2866–2875. https://doi.org/10.1080/03067319.2020.1711900

    Article  CAS  Google Scholar 

  179. Panahi-Kalamuei M, Mousavi-Kamazani M, Salavati-Niasari M, Hosseinpour-Mashkani SM (2015) A simple sonochemical approach for synthesis of selenium nanostructures and investigation of its light harvesting application. Ultrason Sonochem 23:246–256. https://doi.org/10.1016/J.ULTSONCH.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  180. Pansambal S, Oza R, Borgave S, Chauhan A, Bardapurkar P, Vyas S, Ghotekar S (2022) Bioengineered cerium oxide (CeO2) nanoparticles and their diverse applications: a review. Appl Nanosci 2022:1–26. https://doi.org/10.1007/S13204-022-02574-8

    Article  Google Scholar 

  181. Pantidos N, Horsfall LE (2014) Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants. J Nanomed Nanotechnol 05. https://doi.org/10.4172/2157-7439.1000233

  182. Patai S, Rappoport Z (2012) The chemistry of organic selenium and tellurium compounds

  183. Singh AV, Patil R, Anand A, Milani P, Gade WN (2010) Biological synthesis of copper oxide nano particles using escherichia coli. Curr Nanosci 6(4): 365–69. https://doi.org/10.2174/157341310791659062

  184. Pearson K (1901) LIII. On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572. https://doi.org/10.1080/14786440109462720

  185. Peighambardoust SJ, Peighambardoust SH, Mohammadzadeh Pournasir N, Pakdel P (2019) Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packag Shelf Life 22. https://doi.org/10.1016/J.FPSL.2019.100420

  186. Petrera F, Calamari L, Bertin G (2009) Effect of either sodium selenite or Se-yeast supplementation on selenium status and milk characteristics in dairy goats. Small Rumin Res 82:130–138. https://doi.org/10.1016/J.SMALLRUMRES.2009.02.008

    Article  Google Scholar 

  187. Piacenza E, Presentato A, Zonaro E, Lampis S, Vallini G, Turner RJ (2018) Selenium and tellurium nanomaterials. Phys Sci Rev 3. https://doi.org/10.1515/PSR-2017-0100/MACHINEREADABLECITATION/RIS

  188. Pinel-Cabello M, Chapon V, Ruiz-Fresneda MA, Alpha-Bazin B, Berthomieu C, Armengaud J, Merroun ML (2021) Delineation of cellular stages and identification of key proteins for reduction and biotransformation of Se(IV) by Stenotrophomonas bentonitica BII-R7. J Hazard Mater 418. https://doi.org/10.1016/J.JHAZMAT.2021.126150

  189. Prange A, Birzele B, Hormes J, Modrow H (2005) Investigation of different human pathogenic and food contaminating bacteria and moulds grown on selenite/selenate and tellurite/tellurate by X-ray absorption spectroscopy. Food Control 16:723–728. https://doi.org/10.1016/J.FOODCONT.2004.06.010

    Article  CAS  Google Scholar 

  190. Prasad KS, Vaghasiya JV, Soni SS, Patel J, Patel R, Kumari M, Jasmani F, Selvaraj K (2015) Microbial selenium nanoparticles (SeNPs) and their application as a sensitive hydrogen peroxide biosensor. Appl Biochem Biotechnol 177(6):1386–1393. https://doi.org/10.1007/S12010-015-1814-9

    Article  CAS  PubMed  Google Scholar 

  191. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 0:1014. https://doi.org/10.3389/FMICB.2017.01014

  192. Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2018) Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. N Biotechnol 41:1–8. https://doi.org/10.1016/J.NBT.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  193. Pyrzynska K, Sentkowska A (2021) Biosynthesis of selenium nanoparticles using plant extracts. J Nanostructure Chem 2021:1–14. https://doi.org/10.1007/S40097-021-00435-4

    Article  Google Scholar 

  194. Qamar N, John P, Bhatti A (2020) Toxicological and Anti-rheumatic potential of trachyspermum ammi derived biogenic selenium nanoparticles in arthritic Balb/c mice. Int J Nanomedicine 15:3497. https://doi.org/10.2147/IJN.S243718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  195. Qiao L, Dou X, Yan S, Zhang B, Xu C (2020) Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate diquat-induced intestinal barrier dysfunction in C57BL/6 mice through their antioxidant activity. Food Funct 11:3020–3031. https://doi.org/10.1039/D0FO00132E

    Article  CAS  PubMed  Google Scholar 

  196. Qin J, Qiu G, Jian J, Zhou H, Yang L, Charnas A, Zemlyanov DY, Xu CY, Xu X, Wu W, Wang H, Ye PD (2017) Controlled growth of a large-size 2d selenium nanosheet and its electronic and optoelectronic applications. ACS Nano 11:10222–10229. https://doi.org/10.1021/ACSNANO.7B04786/SUPPL_FILE/NN7B04786_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  197. Quintana M, Haro-Poniatowski E, Morales J, Batina N (2002) Synthesis of selenium nanoparticles by pulsed laser ablation. Appl Surf Sci 195:175–186. https://doi.org/10.1016/S0169-4332(02)00549-4

    Article  CAS  Google Scholar 

  198. Quiterio-Gutiérrez T, Ortega-Ortiz H, Cadenas-Pliego G, Hernández-Fuentes AD, Sandoval-Rangel A, Benavides-Mendoza A, la Fuente MC, Juárez-Maldonado A (2019) The application of selenium and copper nanoparticles modifies the biochemical responses of tomato plants under stress by Alternaria solani. Int J Mol Sci 20:1950. https://doi.org/10.3390/IJMS20081950

    Article  PubMed Central  PubMed  Google Scholar 

  199. Ragavan P, Ananth A, Rajan MR (2017) Impact of Selenium Nanoparticles on Growth, Biochemical Characteristics and Yield of Cluster Bean Cyamopsis tetragonoloba. International J Environ Agric Biotechnol 2:2917–2926. https://doi.org/10.22161/IJEAB/2.6.19

    Article  Google Scholar 

  200. Raghunandan D, Bedre MD, Basavaraja S, Sawle B, Manjunath SY, Venkataraman A (2010) Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids Surf B Biointerfaces 79:235–240. https://doi.org/10.1016/J.COLSURFB.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  201. Rajagopal G, Nivetha A, Ilango S, Muthudevi GP, Prabha I, Arthimanju R (2021) Phytofabrication of selenium nanoparticles using Azolla pinnata: Evaluation of catalytic properties in oxidation, antioxidant and antimicrobial activities. J Environ Chem Eng 9:105483. https://doi.org/10.1016/J.JECE.2021.105483

    Article  CAS  Google Scholar 

  202. Rajendran D (2013) application of nano minerals in animal production system. Res J Biotechnol 8:1–3

    CAS  Google Scholar 

  203. Rajeshkumar S, Veena P, Santhiyaa RV (2018) Synthesis and characterization of selenium nanoparticles using natural resources and its applications. Nanotechnol Life Sci 63–79. https://doi.org/10.1007/978-3-319-99570-0_4

  204. Ralston N (2008) Erratum: Nano-selenium captures mercury. Nat Nanotechnol 3(11):648–648. https://doi.org/10.1038/nnano.2008.310

    Article  CAS  Google Scholar 

  205. Ramamurthy CH, Sampath KS, Arunkumar P, Kumar MS, Sujatha V, Premkumar K, Thirunavukkarasu C (2013) Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng 36(8):1131–1139. https://doi.org/10.1007/S00449-012-0867-1

    Article  CAS  PubMed  Google Scholar 

  206. Ramya S, Shanmugasundaram T, Balagurunathan R (2019) Actinobacterial enzyme mediated synthesis of selenium nanoparticles for antibacterial, mosquito larvicidal and anthelminthic applications. 38:63–72. https://doi.org/10.1080/02726351.2018.1508098

  207. Ranjitha VR, Ravishankar VR (2018) Extracellular synthesis of selenium nanoparticles from an Actinomycetes Streptomyces griseoruber and evaluation of its cytotoxicity on HT-29 cell line. Pharm Nanotechnol 6:61–68. https://doi.org/10.2174/2211738505666171113141010

    Article  CAS  PubMed  Google Scholar 

  208. Rashidi S, Fernández-Rubio C, Mansouri R, Ali-Hassanzadeh M, Ghani E, Karimazar M, Manzano-Román R, Nguewa P (2022) Selenium and protozoan parasitic infections: selenocompounds and selenoproteins potential. Parasitol Res 121:49–62. https://doi.org/10.1007/S00436-021-07400-8

    Article  PubMed Central  PubMed  Google Scholar 

  209. Razaghi A, Poorebrahim M, Sarhan D, Björnstedt M (2021) Selenium stimulates the antitumour immunity: Insights to future research. Eur J Cancer 155:256–267. https://doi.org/10.1016/J.EJCA.2021.07.013

    Article  CAS  PubMed  Google Scholar 

  210. Ridley H, Watts CA, Richardson DJ, Butler CS (2006) Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenate oxyanions. Appl Environ Microbiol 72:5173. https://doi.org/10.1128/AEM.00568-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  211. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763. https://doi.org/10.1039/B714449K

    Article  CAS  PubMed  Google Scholar 

  212. Rosenfeld CE, Kenyon JA, James BR, Santelli CM (2017) Selenium (IV, VI) reduction and tolerance by fungi in an oxic environment. Geobiology 15:441–452. https://doi.org/10.1111/GBI.12224

    Article  CAS  PubMed  Google Scholar 

  213. RStudio Team (2019) RStudio: Integrated Development Environment for R

  214. Safari M, Oraghi Ardebili ZO, Iranbakhsh A (2018) Selenium nano-particle induced alterations in expression patterns of heat shock factor A4A (HSFA4A), and high molecular weight glutenin subunit 1Bx (Glu-1Bx) and enhanced nitrate reductase activity in wheat (Triticum aestivum L.). Acta Physiol Plant 40(6):117–124. https://doi.org/10.1007/S11738-018-2694-8

  215. Saif S, Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6:209. https://doi.org/10.3390/nano6110209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  216. San Keskin, N.O., Akbal Vural, O., Abaci, S., 2020. Biosynthesis of noble selenium nanoparticles from Lysinibacillus sp. NOSK for antimicrobial, antibiofilm activity, and biocompatibility. 37:919–928. https://doi.org/10.1080/01490451.2020.1799264

  217. Sarkar J, Chakraborty N, Chatterjee A, Bhattacharjee A, Dasgupta D, Acharya K (2020) Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials 10. https://doi.org/10.3390/nano10020312

  218. Sarkar J, Dey P, Saha S, Acharya K (2011) Mycosynthesis of selenium nanoparticles. Micro Nano Lett 6:599–602. https://doi.org/10.1049/MNL.2011.0227/CITE/REFWORKS

    Article  CAS  Google Scholar 

  219. Sarkar J, Mollick MMR, Chattopadhyay D, Acharya K (2017) An eco-friendly route of γ-Fe2O3 nanoparticles formation and investigation of the mechanical properties of the HPMC-γ-Fe2O3 nanocomposites. Bioprocess Biosyst Eng 40:351–359. https://doi.org/10.1007/S00449-016-1702-X

    Article  CAS  PubMed  Google Scholar 

  220. Sarkar J, Saha S, Dey P, Acharya K (2012) Production of selenium nanorods by phytopathogen, Alternaria alternata. Adv Sci Lett 10:111–114. https://doi.org/10.1166/ASL.2012.2137

    Article  CAS  Google Scholar 

  221. Sarkar J, Mridha D, Sarkar J, Orasugh JT, Gangopadhyay B, Chattopadhyay D, Roychowdhury T, Acharya K (2021) Synthesis of nanosilica from agricultural wastes and its multifaceted applications: a review. Biocatal Agric Biotechnol 37:102175. https://doi.org/10.1016/j.bcab.2021.102175

    Article  CAS  Google Scholar 

  222. Sarwar N, Akhtar M, Kamran MA, Imran M, Riaz MA, Kamran K, Hussain S (2020) Selenium biofortification in food crops: Key mechanisms and future perspectives. J Food Compos Anal 93:103615. https://doi.org/10.1016/J.JFCA.2020.103615

    Article  CAS  Google Scholar 

  223. Sastry M, Ahmad A, Khan I, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85:162–170. https://doi.org/10.1016/S0927-7765(02)00174-1

    Article  CAS  Google Scholar 

  224. Sawant VJ, Sawant VJ (2020) Biogenic capped selenium nano rods as naked eye and selective hydrogen peroxide spectrometric sensor. Sens Biosensing Res 27:100314. https://doi.org/10.1016/J.SBSR.2019.100314

    Article  Google Scholar 

  225. Sayes CM, Alex Smith P, Ivanov IV (2013) A framework for grouping nanoparticles based on their measurable characteristics. Int J Nanomedicine 8:45. https://doi.org/10.2147/IJN.S40521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  226. Schaffer B, Hohenester U, Trugler A, Hofer F (2009) High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy. Phys Rev B Condens Matter Mater Phys 79. https://doi.org/10.1103/PhysRevB.79.041401

  227. Schiavon M, Nardi S, dalla Vecchia F, Ertani A (2020) Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant Soil 453(1):245–270. https://doi.org/10.1007/S11104-020-04635-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  228. Schiavon M, Pilon-Smits EAH (2017) Selenium biofortification and phytoremediation phytotechnologies: a review. J Environ Qual 46:10–19. https://doi.org/10.2134/JEQ2016.09.0342

    Article  CAS  PubMed  Google Scholar 

  229. Schumann B, Schmid M (2018) Packaging concepts for fresh and processed meat – Recent progresses. Innov Food Sci Emerg Technol 47:88–100. https://doi.org/10.1016/J.IFSET.2018.02.005

    Article  CAS  Google Scholar 

  230. Shahzamani K, Lashgarian HE, Karkhane M, Ghaffarizadeh A, Ghotekar S, Marzban A (2022) Bioactivity assessments of phyco-assisted synthesized selenium nanoparticles by aqueous extract of green seaweed, Ulva fasciata. Emergent Mater 2022:1–10. https://doi.org/10.1007/S42247-022-00415-6

    Article  Google Scholar 

  231. Shang Y, Kamrul Hasan M, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24. https://doi.org/10.3390/molecules24142558

  232. Shankar S, Wang LF, Rhim JW (2019) Effect of melanin nanoparticles on the mechanical, water vapor barrier, and antioxidant properties of gelatin-based films for food packaging application. Food Packag Shelf Life 21:100363. https://doi.org/10.1016/J.FPSL.2019.100363

    Article  Google Scholar 

  233. Shar AH, Lakhan MN, Wang J, Ahmed M, Alali KT, Ahmed R, Ali I, Dayo AQ (2019) Facile synthesis and characterization of selenium nanoparticles by the hydrothermal approach. Dig J Nanomater Biostruct 14:867–872

    Google Scholar 

  234. Sharma D, Kanchi S, Bisetty K (2019) Biogenic synthesis of nanoparticles: A review. Arab J Chem 12:3576–3600. https://doi.org/10.1016/J.ARABJC.2015.11.002

    Article  CAS  Google Scholar 

  235. Sharma G, Sharma AR, Bhavesh R, Park J, Ganbold B, Nam JS, Lee SS (2014) Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules 19:2761–2770. https://doi.org/10.3390/MOLECULES19032761

    Article  PubMed Central  PubMed  Google Scholar 

  236. Sharma S, Goyal R, Sandana U (2014) Selenium accumulation and antioxidant status of rice plants grown on seleniferous soil from northwestern India. Rice Sci 21:327–334

    Article  Google Scholar 

  237. Sheikhlou K, Allahyari S, Sabouri S, Najian Y, Jafarizadeh-Malmiri H (2020) Walnut leaf extract-based green synthesis of selenium nanoparticles via microwave irradiation and their characteristics assessment. Open Agric 5:227–235. https://doi.org/10.1515/OPAG-2020-0024/MACHINEREADABLECITATION/RIS

    Article  Google Scholar 

  238. Sheini FJ, Ghasemi N, Jamali-Sheini F, Zekavati R (2017) CuO and Ag/CuO nanoparticles: biosynthesis and antibacterial properties metal-chalcogenide and metal-oxide nanostructures as different applications such as solar-cells, photodiode, photocatalyst, and cytotoxicity view project optical properties of semiconducting nanostructures for photocatalytic applications: fundamental understanding and material design view project CuO and Ag/CuO nanoparticles: biosynthesis and antibacterial properties. Elsevier. https://doi.org/10.1016/j.matlet.2017.02.111

    Article  Google Scholar 

  239. Shen Q, Zhang B, Xu R, Wang Y, Ding X, Li P (2010) Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis 01. Anaerobe 16:380–386. https://doi.org/10.1016/J.ANAEROBE.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  240. Shi L, Xun W, Yue W, Zhang C, Ren Y, Shi L, Wang Q, Yang R, Lei F (2011) Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin Res 96:49–52. https://doi.org/10.1016/J.SMALLRUMRES.2010.11.005

    Article  Google Scholar 

  241. Shi XD, Tian YQ, Wu JL, Wang SY (2021) Synthesis, characterization, and biological activity of selenium nanoparticles conjugated with polysaccharides. Crit Rev Food Sci Nutr 61:2225–2236. https://doi.org/10.1080/10408398.2020.1774497

    Article  CAS  PubMed  Google Scholar 

  242. Shi Y, Li H, Li LJ (2015) Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem Soc Rev 44:2744–2756. https://doi.org/10.1039/C4CS00256C

    Article  CAS  PubMed  Google Scholar 

  243. Shlens J (2014) A tutorial on principal component analysis. https://doi.org/10.48550/arxiv.1404.1100

  244. Shoeibi S, Mashreghi M (2017) Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J Trace Elem Med Biol 39:135–139. https://doi.org/10.1016/j.jtemb.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  245. Shoeibi S, Mozdziak P, Golkar-Narenji A (2017) Biogenesis of Selenium Nanoparticles Using Green Chemistry. Top Curr Chem (Cham) 375.https://doi.org/10.1007/S41061-017-0176-X

  246. Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(1):1–24. https://doi.org/10.1186/S12951-018-0408-4

    Article  Google Scholar 

  247. Singh N, Abraham J (2014) Biosynthesis of silver and selenium nanoparticles by Bacillus sp. JAPSK2 and evaluation of antimicrobial activity Therapeutic Options for Metallo-β-Lactamase-Producing Enterobacterales View project Generating Genotype-Specific Aminoglycoside Combinations with Ceftazidime/Avibactam for KPC-Producing Klebsiella pneumoniae View project

  248. Song D, Li X, Cheng Y, Xiao X, Lu Z, Wang Y, Wang F (2017) Aerobic biogenesis of selenium nanoparticles by Enterobacter cloacae Z0206 as a consequence of fumarate reductase mediated selenite reduction. Sci Rep 7(3239):1–10. https://doi.org/10.1038/s41598-017-03558-3

    Article  CAS  Google Scholar 

  249. Soni K (2017) Green synthesis of selenium nanoparticles from broccoli, characterization, application and 0054oxicity. https://doi.org/10.4172/2379-1764.1000198

  250. Sonkusre P (2020) Specificity of Biogenic Selenium Nanoparticles for Prostate Cancer Therapy With Reduced Risk of Toxicity: An in vitro and in vivo Study. Front Oncol 9.https://doi.org/10.3389/FONC.2019.01541

  251. Sonkusre P, Cameotra SS (2017) Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. J Nanobiotechnol 15.https://doi.org/10.1186/S12951-017-0276-3

  252. Sowndarya P, Ramkumar G, Shivakumar MS (2017) Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artif Cells Nanomed Biotechnol 45:1490–1495. https://doi.org/10.1080/21691401.2016.1252383

    Article  CAS  PubMed  Google Scholar 

  253. Srivastava N, Mukhopadhyay M (2015) Biosynthesis and structural characterization of selenium nanoparticles using Gliocladium roseum. J Clust Sci 26:1473–1482. https://doi.org/10.1007/S10876-014-0833-Y/FIGURES/10

    Article  CAS  Google Scholar 

  254. Srivastava N, Mukhopadhyay M (2013) Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol 244:26–29. https://doi.org/10.1016/j.powtec.2013.03.050

    Article  CAS  Google Scholar 

  255. Srivastava P, Kowshik M (2016) Anti-neoplastic selenium nanoparticles from Idiomarina sp. PR58-8. Enzyme Microb Technol 95:192–200. https://doi.org/10.1016/J.ENZMICTEC.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  256. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem 2:454–460. https://doi.org/10.1038/nchem.623

    Article  CAS  PubMed  Google Scholar 

  257. Su Y, Chen L, Yang F, Cheung PCK (2021) Beta-d-glucan-based drug delivery system and its potential application in targeting tumor associated macrophages. Carbohydr Polym 253:117258. https://doi.org/10.1016/J.CARBPOL.2020.117258

    Article  CAS  PubMed  Google Scholar 

  258. Sun HJ, Rathinasabapathi B, Wu B, Luo J, Pu LP, Ma LQ (2014) Arsenic and selenium toxicity and their interactive effects in humans. Environ Int 69:148–158. https://doi.org/10.1016/J.ENVINT.2014.04.019

    Article  CAS  PubMed  Google Scholar 

  259. Sun, Murray, Weller, Folks, Moser (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science (1979) 287:1989–92. https://doi.org/10.1126/science.287.5460.1989

    Article  CAS  Google Scholar 

  260. Taherzadeh MJ, Fox M, Hjorth H, Edebo L (2003) Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae. Bioresour Technol 88:167–177. https://doi.org/10.1016/S0960-8524(03)00010-5

    Article  CAS  PubMed  Google Scholar 

  261. Takahashi T, Yagi S, Sagawa T, Nagata K, Miyamoto Y (1985) X-Ray Photoemission study of orthorhombic selenium; a new allotrope of crystalline selenium. JPSJ 54:1018. https://doi.org/10.1143/JPSJ.54.1018

    Article  Google Scholar 

  262. Tan Y, Wang Y, Wang Yu, Xu D, Huang Y, Wang D, Wang G, Rensing C, Zheng S (2018) Novel mechanisms of selenate and selenite reduction in the obligate aerobic bacterium Comamonas testosteroni S44. J Hazard Mater 359:129–138. https://doi.org/10.1016/J.JHAZMAT.2018.07.014

    Article  CAS  PubMed  Google Scholar 

  263. Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131. https://doi.org/10.1016/S0956-5663(01)00115-4

    Article  PubMed  Google Scholar 

  264. Tripathi RM, Hameed P, Rao RP, Shrivastava N, Mittal J, Mohapatra S (2020) Biosynthesis of highly stable fluorescent selenium nanoparticles and the evaluation of their photocatalytic degradation of dye. BioNanoScience 10(2):389–396. https://doi.org/10.1007/S12668-020-00718-0

    Article  Google Scholar 

  265. Tsivileva O, Pozdnyakov A, Ivanova A (2021) Polymer nanocomposites of selenium biofabricated using fungi. Molecules 26:3657. https://doi.org/10.3390/MOLECULES26123657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  266. Tugarova AV, Kamnev AA (2017) Proteins in microbial synthesis of selenium nanoparticles. Talanta 174:539–547. https://doi.org/10.1016/J.TALANTA.2017.06.013

    Article  CAS  PubMed  Google Scholar 

  267. Turło J, Gutkowska B, Herold F (2010) Effect of selenium enrichment on antioxidant activities and chemical composition of Lentinula edodes (Berk.) Pegl. mycelial extracts. Food Chem Toxicol 48:1085–1091. https://doi.org/10.1016/J.FCT.2010.01.030

    Article  PubMed  Google Scholar 

  268. Tzeng W-Y, Tseng Y-H, Yeh T-T, Tu C-M, Sankar R, Sankar R, Chen Y-H, Huang B-H, Chou F-C, Luo C-W, Luo C-W, Luo C-W (2020) Selenium nanoparticle prepared by femtosecond laser-induced plasma shock wave. Optics Express 28(1):685–694. https://doi.org/10.1364/OE.381898

    Article  CAS  PubMed  Google Scholar 

  269. Varlamova EG, Goltyaev MV, Mal’tseva VN, Turovsky EA, Sarimov RM, Simakin AV, Gudkov SV (2021a) Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines. Int J Mol Sci 22.https://doi.org/10.3390/IJMS22157798

  270. Varlamova EG, Turovsky EA, Blinova EV (2021) Therapeutic potential and main methods of obtaining selenium nanoparticles. Int J Mol Sci 22:10808. https://doi.org/10.3390/IJMS221910808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  271. Vasilyeva E, Nasibulin A, Tolochko O, Rudskoy A, Sachdev A, Xiao X (2015) Application of WSe2 nanoparticles synthesized by chemical vapor condensation method for Li-Ion battery anodes. Zeitschrift fur Physikalische Chemie 229:1429–1437. https://doi.org/10.1515/ZPCH-2015-0573/MACHINEREADABLECITATION/RIS

    Article  CAS  Google Scholar 

  272. Vennila K, Chitra L, Balagurunathan R, Palvannan T (2018) Comparison of biological activities of selenium and silver nanoparticles attached with bioactive phytoconstituents: green synthesized using Spermacoce hispida extract. Adv Nat Sci: Nanosci Nanotechnol 9:015005. https://doi.org/10.1088/2043-6254/AA9F4D

    Article  Google Scholar 

  273. Verma VC, Singh SK, Solanki R, Prakash S (2011) Biofabrication of anisotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Res Lett 6:1–7. https://doi.org/10.1007/s11671-010-9743-6

    Article  CAS  Google Scholar 

  274. Vetchinkina E, Loshchinina E, Kupryashina M, Burov A, Nikitina V (2019) Shape and size diversity of gold, silver, selenium, and silica nanoparticles prepared by green synthesis using fungi and bacteria. Ind Eng Chem Res 58:17207–17218. https://doi.org/10.1021/ACS.IECR.9B03345

    Article  CAS  Google Scholar 

  275. Vetchinkina E, Loshchinina E, Kupryashina M, Burov A, Pylaev T, Nikitina V (2018) Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes. PeerJ 2018:e5237. https://doi.org/10.7717/PEERJ.5237/SUPP-1

    Article  Google Scholar 

  276. Vetchinkina E, Loshchinina E, Kursky V, Nikitina V (2013) Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium. J Microbiol 51:829–835. https://doi.org/10.1007/S12275-013-2689-5

    Article  CAS  PubMed  Google Scholar 

  277. Viacava K, Ammann E, Bravo D, Lenz M (2020) Low-temperature reactive aerosol processing for large-scale synthesis of selenium nanoparticles. Ind Eng Chem Res 59:16088–16094. https://doi.org/10.1021/ACS.IECR.0C03213/SUPPL_FILE/IE0C03213_SI_001.PDF

    Article  CAS  Google Scholar 

  278. Vijayaraghavan K, Ashokkumar T (2017) Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 5:4866–4883. https://doi.org/10.1016/J.JECE.2017.09.026

    Article  CAS  Google Scholar 

  279. Vyas J, Rana S (2017) Antioxidant activity and green synthesis of selenium nanoparticles using allium sativum extract. Int J Phytomed 9:634. https://doi.org/10.5138/09750185.2185

    Article  CAS  Google Scholar 

  280. Wadhwani SA, Gorain M, Banerjee P, Shedbalkar UU, Singh R, Kundu GC, Chopade BA (2017) Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells. Int J Nanomedicine 12:6841–6855. https://doi.org/10.2147/IJN.S139212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  281. Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2018) Biosynthesis of gold and selenium nanoparticles by purified protein from Acinetobacter sp. SW 30. Enzyme Microb Technol 111:81–86. https://doi.org/10.1016/J.ENZMICTEC.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  282. Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 100:2555–2566. https://doi.org/10.1007/S00253-016-7300-7/FIGURES/3

    Article  CAS  PubMed  Google Scholar 

  283. Walter J, Shioyama H (1999) SeCl4 graphite intercalation compound: a precursor material for encapsulated selenium nanoparticles. J Phys: Condens Matter 11:L21. https://doi.org/10.1088/0953-8984/11/5/001

    Article  CAS  Google Scholar 

  284. Wang K, Wang Y, Wan Y, Mi Z, Wang Qiqi, Wang Qi, Li H (2021) The fate of arsenic in rice plants (Oryza sativa L.): Influence of different forms of selenium. Chemosphere 264:128417. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128417

    Article  CAS  PubMed  Google Scholar 

  285. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249. https://doi.org/10.2147/IJN.S121956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  286. Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B Biointerfaces 80:94–102. https://doi.org/10.1016/J.COLSURFB.2010.05.041

    Article  CAS  PubMed  Google Scholar 

  287. Wang X, Liu G, Zhou J, Wang J, Jin R, Lv H (2011) Quinone-mediated reduction of selenite and tellurite by Escherichia coli. Bioresour Technol 102:3268–3271. https://doi.org/10.1016/J.BIORTECH.2010.11.078

    Article  CAS  PubMed  Google Scholar 

  288. Wangeline AL, Rodolfo Valdez J, Lindblom SD, Bowling KL, Brent Reeves F, Pilon-Smits EAH (2011) Characterization of rhizosphere fungi from selenium hyperaccumulator and nonhyperaccumulator plants along the eastern Rocky Mountain Front Range. Am J Bot 98:1139–1147. https://doi.org/10.3732/AJB.1000369

    Article  PubMed  Google Scholar 

  289. Wen S, Hui Y, Chuang W (2021) Biosynthesis and antioxidation of nano-selenium using lemon juice as a reducing agent. Green Process Synthesis 10:178–188. https://doi.org/10.1515/GPS-2021-0018

    Article  CAS  Google Scholar 

  290. Won S, Ha MG, Nguyen DD, Kang HY (2021) Biological selenite removal and recovery of selenium nanoparticles by haloalkaliphilic bacteria isolated from the Nakdong River. Environ Pollut 280:117001. https://doi.org/10.1016/j.envpol.2021.117001

    Article  CAS  PubMed  Google Scholar 

  291. Wong CW, Chan YS, Jeevanandam J, Pal K, Bechelany M, Abd Elkodous M, El-Sayyad GS (2020) Response Surface methodology optimization of mono-dispersed MgO nanoparticles fabricated by ultrasonic-assisted sol–gel method for outstanding antimicrobial and antibiofilm activities. J Clust Sci 31:367–389. https://doi.org/10.1007/S10876-019-01651-3

    Article  CAS  Google Scholar 

  292. Wu C, Dun Y, Zhang Z, Li M, Wu G (2020) Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil. Ecotoxicol Environ Saf 190. https://doi.org/10.1016/J.ECOENV.2019.110091

  293. Wu C, Zhu Y, Wu T, Wang L, Yuan Y, Chen J, Hu Y, Pang J (2019) Enhanced functional properties of biopolymer film incorporated with curcurmin-loaded mesoporous silica nanoparticles for food packaging. Food Chem 288:139–145. https://doi.org/10.1016/J.FOODCHEM.2019.03.010

    Article  CAS  PubMed  Google Scholar 

  294. Wu S, Sun K, Wang X, Wang D, Wan X, Zhang J (2013) Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles. J Agric Food Chem 61:7268–7275. https://doi.org/10.1021/JF4000083

    Article  CAS  PubMed  Google Scholar 

  295. Wu Z, Huang X, Li YC, Xiao H, Wang X (2018) Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydr Polym 199:210–218. https://doi.org/10.1016/J.CARBPOL.2018.07.030

    Article  CAS  PubMed  Google Scholar 

  296. Xia M-S, Zhang H-M, Hu C-H (2005) Effect of nano-selenium on meat quality of pigs 31:263–268

  297. Xia X, Wu S, Li N, Wang D, Zheng S, Wang G (2018) Novel bacterial selenite reductase CsrF responsible for Se(IV) and Cr(VI) reduction that produces nanoparticles in Alishewanella sp. WH16-1. J Hazard Mater 342:499–509. https://doi.org/10.1016/J.JHAZMAT.2017.08.051

    Article  CAS  PubMed  Google Scholar 

  298. Xiao J, Cao H, Guo S, Xiao S, Li N, Li M, Wu Y, Liu H (2021) Long-term administration of low-dose selenium nanoparticles with different sizes aggravated atherosclerotic lesions and exhibited toxicity in apolipoprotein E-deficient mice. Chem Biol Interact 347:109601.https://doi.org/10.1016/J.CBI.2021.109601

  299. Xiao X, Liu QY, Lu XR, Li TT, Feng XL, Li Q, Liu ZY, Feng YJ (2017) Self-assembly of complex hollow CuS nano/micro shell by an electrochemically active bacterium Shewanella oneidensis MR-1. Int Biodeterior Biodegradation 116:10–16. https://doi.org/10.1016/J.IBIOD.2016.09.021

    Article  CAS  Google Scholar 

  300. Xiao Y, Huang Q, Zheng Z, Guan H, Liu S (2017) Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities. Int J Biol Macromol 99:483–491. https://doi.org/10.1016/J.IJBIOMAC.2017.03.016

    Article  CAS  PubMed  Google Scholar 

  301. Xu C, Qiao L, Guo Y, Ma L, Cheng Y (2018) Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Carbohydr Polym 195:576–585. https://doi.org/10.1016/J.CARBPOL.2018.04.110

    Article  CAS  PubMed  Google Scholar 

  302. Xu Di, Yang L, Wang Y, Wang G, Rensing C, Zheng S (2018) Proteins enriched in charged amino acids control the formation and stabilization of selenium nanoparticles in Comamonas testosteroni S44. Sci Rep 8(1):1–11. https://doi.org/10.1038/s41598-018-23295-5

    Article  CAS  Google Scholar 

  303. Yang H, Jia X (2014) Safety evaluation of Se-methylselenocysteine as nutritional selenium supplement: acute toxicity, genotoxicity and subchronic toxicity. Regul Toxicol Pharmacol 70:720–727. https://doi.org/10.1016/j.yrtph.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  304. Yang L, Wang N, Zheng G (2018) Enhanced effect of combining chlorogenic acid on selenium nanoparticles in inhibiting Amyloid β aggregation and reactive oxygen species formation in vitro. Nanoscale Res Lett 13(1):1–9. https://doi.org/10.1186/S11671-018-2720-1

    Article  Google Scholar 

  305. Yang T, Lee SY, Park KC, Park SH, Chung J, Lee S (2022) the effects of selenium on bone health: from element to therapeutics. Molecules 27:392. https://doi.org/10.3390/MOLECULES27020392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  306. Zeebaree AYS, Zeebaree SYS, Rashid RF, Zebari OIH, Albarwry AJS, Ali AF, Zebari AYS (2022) Sustainable engineering of plant-synthesized TiO2 nanocatalysts: diagnosis, properties and their photocatalytic performance in removing of methylene blue dye from effluent. Rev Curr Res Green Sustain Chem 5:100312. https://doi.org/10.1016/J.CRGSC.2022.100312

    Article  Google Scholar 

  307. Yazdi MH, Masoudifar M, Varastehmoradi B, Mohammadi E, Kheradmand E, Homayouni S, Shahverdi AR (2013) Effect of oral supplementation of biogenic selenium nanoparticles on white blood cell profile of BALB/c mice and mice exposed to x-ray radiation. Avicenna J Med Biotechnol 5:158

    CAS  PubMed Central  PubMed  Google Scholar 

  308. Ye X, Chen L, Liu L, Bai Y (2017) Electrochemical synthesis of selenium nanoparticles and formation of sea urchin-like selenium nanoparticles by electrostatic assembly. Mater Lett 196:381–384. https://doi.org/10.1016/J.MATLET.2017.03.072

    Article  CAS  Google Scholar 

  309. Yee N, Ma J, Dalia A, Boonfueng T, Kobayashi DY (2007) Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl Environ Microbiol 73:1914–1920. https://doi.org/10.1128/AEM.02542-06/ASSET/921EECAE-31BD-40B7-ACAD-741A7A599687/ASSETS/GRAPHIC/ZAM0060776130005.JPEG

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  310. Yu B, Liu T, Du Y, Luo Z, Zheng W, Chen T (2016) X-ray-responsive selenium nanoparticles for enhanced cancer chemo-radiotherapy. Colloids Surf B Biointerfaces 139:180–189. https://doi.org/10.1016/J.COLSURFB.2015.11.063

    Article  CAS  PubMed  Google Scholar 

  311. Yu Z, Wang W, Kong F, Lin M, Mustapha A (2019) Cellulose nanofibril/silver nanoparticle composite as an active food packaging system and its toxicity to human colon cells. Int J Biol Macromol 129:887–894. https://doi.org/10.1016/J.IJBIOMAC.2019.02.084

    Article  CAS  PubMed  Google Scholar 

  312. Zahedi SM, Abdelrahman M, Hosseini MS, Hoveizeh NF, Tran LSP (2019) Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environ Pollut 253:246–258. https://doi.org/10.1016/J.ENVPOL.2019.04.078

    Article  CAS  PubMed  Google Scholar 

  313. Zambonino MC, Quizhpe EM, Jaramillo FE, Rahman A, Vispo NS, Jeffryes C, Dahoumane SA (2021) Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. Int J Mol Sci 22:989. https://doi.org/10.3390/IJMS22030989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  314. Zare B, Babaie S, Setayesh N, Shahverdi AR (2013) Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed J 1:13–19

    Google Scholar 

  315. Zeebaree SYS, Zeebaree AYS, Zebari OIH (2020) Diagnosis of the multiple effect of selenium nanoparticles decorated by Asteriscus graveolens components in inhibiting HepG2 cell proliferation. Sustain Chem Pharm 15:100210. https://doi.org/10.1016/J.SCP.2019.100210

    Article  Google Scholar 

  316. Zhang H, Zhou H, Bai J, Li Y, Yang J, Ma Q, Qu Y (2019) Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloids Surf A Physicochem Eng Asp 571:9–16. https://doi.org/10.1016/J.COLSURFA.2019.02.070

    Article  CAS  Google Scholar 

  317. Zhang H, Zuo M, Tan S, Li G, Zhang S, Hou J (2005) Carbothermal chemical vapor deposition route to se one-dimensional nanostructures and their optical properties. J Phys Chem B 109:10653–10657. https://doi.org/10.1021/JP044152I

    Article  CAS  PubMed  Google Scholar 

  318. Zhang J, Spallholz JE (2011) Toxicity of selenium compounds and nano-selenium particles. Gen Appl Syst Toxicol. https://doi.org/10.1002/9780470744307.GAT243

    Article  Google Scholar 

  319. Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D (2011) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B Biointerfaces 88:196–201. https://doi.org/10.1016/j.colsurfb.2011.06.031

    Article  CAS  PubMed  Google Scholar 

  320. Zhang W, Zhang J, Ding D, Zhang L, Muehlmann LA, Deng SE, Wang X, Li W, Zhang W (2018) Synthesis and antioxidant properties of Lycium barbarum polysaccharides capped selenium nanoparticles using tea extract. Artif Cells Nanomed Biotechnol 46:1463–1470. https://doi.org/10.1080/21691401.2017.1373657

    Article  CAS  PubMed  Google Scholar 

  321. Zhang Y, Wang J, Zhang L (2010) Creation of highly stable selenium nanoparticles capped with hyperbranched polysaccharide in water. Langmuir 26:17617–17623. https://doi.org/10.1021/LA1033959/SUPPL_FILE/LA1033959_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  322. Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H, Jin M (2017) Fungal silver nanoparticles: synthesis, application and challenges. 38:817–835. https://doi.org/10.1080/07388551.2017.1414141

  323. Zhou J, Zhang D, Lv X, Liu X, Xu W, Chen L, Cai J, Din ZU, Cheng S (2022) Green synthesis of robust selenium nanoparticles via polysaccharide-polyphenol interaction: design principles and structure-bioactivity relationship. ACS Sustain Chem Eng 10:2052–2062. https://doi.org/10.1021/ACSSUSCHEMENG.1C06048/SUPPL_FILE/SC1C06048_SI_001.PDF

    Article  CAS  Google Scholar 

  324. Zhou X, Wang Y, Gu Q, Li W (2009) Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture 291:78–81. https://doi.org/10.1016/J.AQUACULTURE.2009.03.007

    Article  CAS  Google Scholar 

  325. Zhu YJ, Hu XL (2004) Preparation of powders of selenium nanorods and nanowires by microwave-polyol method. Mater Lett 58:1234–1236. https://doi.org/10.1016/J.MATLET.2003.09.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All of the scholars whose work has been cited and referenced in this manuscript are thanked by the authors for their contributions. The authors would also like to express their gratitude to the authors, editors, and publishers of all the articles, journals, and books cited in this article.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Joy Sarkar], [Jit Sarkar], [Deepanjan Mridha], and [Jishnu Banerjee]; Formal analysis and investigation: [Jit Sarkar], [Deepanjan Mridha], [Jishnu Banerjee], [Sumeddha Chanda], and [Kasturi Ray]. Writing: original draft preparation: [Jit Sarkar], [Deepanjan Mridha], [Jishnu Banerjee], [Sumedha Chanda], and [Kasturi Ray]. Image preparation: [Joy Sarkar], [Jit Sarkar], and [Jishnu Banerjee]. Writing—review and editing: [Krishnendu Acharya], [Joy Sarkar], [Tarit Roychowdhury], and [Mubarak Ali Davoodbasha]. Funding acquisition: [N/A]. Resources: [N/A]. Supervision: [Joy Sarkar] and [Krishnendu Acharya].

Corresponding authors

Correspondence to Krishnendu Acharya or Joy Sarkar.

Ethics declarations

Ethics Approval

Not applicable.

Permission to Reproduce Material from Other Sources

Not applicable.

Consent to Participate

All the authors mutually agree to participate in this work.

Consent for Publication

All the authors mutually agree to submit the manuscript for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, J., Mridha, D., Davoodbasha, M.A. et al. A State-of-the-Art Systemic Review on Selenium Nanoparticles: Mechanisms and Factors Influencing Biogenesis and Its Potential Applications. Biol Trace Elem Res 201, 5000–5036 (2023). https://doi.org/10.1007/s12011-022-03549-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03549-0

Keywords

Navigation