Skip to main content

Advertisement

Log in

Association of Blood Heavy Metal Exposure with Atherosclerotic Cardiovascular Disease (ASCVD) Among White Adults: Evidence from NHANES 1999–2018

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cardiovascular diseases (CVD) are main public health concerns highly prevalent in industrialized societies where human health is threatened by a series of environmental pollutants, particularly heavy metal contaminants. We aimed to find out if blood heavy metals are associated with the 10-year risk of atherosclerotic cardiovascular disease (ASCVD) in a nationally representative sample of US adults. We analyzed the cross-sectional data on blood heavy metals of 3268 non-Hispanic white participants aged 40–79 years from the National Health and Nutrition Examination Survey (NHANES) 1999–2018. We introduced a risk estimation algorithm, namely the 2013 Pooled Cohort Equations (PCE), to assess the risk for ASCVD over a 10-year period. The 10-year risk for ASCVD was categorized as either reduced risk (< 7.5% risk) or elevated risk (≥ 7.5% risk). Blood lead, cadmium, and mercury were distributed into four quartiles. We used weighted multivariate logistic regression models and restricted cubic spline (RCS) regression to detect the association of blood heavy metal exposure with 10-year ASCVD risk. Following the adjustment of covariates, the adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for elevated 10-year ASCVD risk for participants from the highest quartiles were 4.50 (2.88–7.02), 2.59 (1.68–4.00), and 1.06 (0.66–1.71) for blood cadmium, lead, and mercury compared to the lowest quartiles, respectively. The RCS plot demonstrated that blood cadmium was linearly and positively associated with 10-year ASCVD risk (P for nonlinearity = 0.112). According to our findings, non-Hispanic whites aged 40–79 years had a greater 10-year ASCVD risk as their blood lead and cadmium levels increased. Consequently, when establishing approaches for ASCVD prevention, blood heavy metals should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the NHANES website (https://www.cdc.gov/nchs/nhanes/index.htm).

Abbreviations

CVD:

Cardiovascular disease

ASCVD:

Atherosclerotic cardiovascular disease

CHD:

Coronary heart disease

NHANES:

National Health and Nutrition Examination Survey

SBP:

Systolic blood pressure

TC:

Total cholesterol

HDL-C:

High density lipoprotein cholesterol

BMI:

Body mass index

LDL-C:

Low-density lipoprotein cholesterol

CRP:

C-reactive protein

TG:

Triglyceride

UA:

Uric acid

eGFR:

Estimated glomerular filtration rate

RCS:

Restricted cubic spline

OR:

Odds ratio

CI:

Confidence interval

MI:

Myocardial infarction

ROS:

Reactive oxygen species

NO:

Nitric oxide

References

  1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM et al (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol 76:2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010

    Article  PubMed  PubMed Central  Google Scholar 

  2. GBD (2019) Diseases and Injuries Collaborators (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396:1204–1222. https://doi.org/10.1016/s0140-6736(20)30925-9

    Article  Google Scholar 

  3. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS et al (2022) Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation 145:e153–e639. https://doi.org/10.1161/cir.0000000000001052

    Article  PubMed  Google Scholar 

  4. Myong JP, Kim HR, Jang TW, Lee HE, Koo JW (2014) Association between blood cadmium levels and 10-year coronary heart disease risk in the general Korean population: the Korean National Health and Nutrition Examination Survey 2008–2010. PLoS One 9:e111909. https://doi.org/10.1371/journal.pone.0111909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Xu C, Fu Z, Shu Y, Zhang J, Lu C et al (2018) Associations between total mercury and methyl mercury exposure and cardiovascular risk factors in US adolescents. Environ Sci Pollut Res Int 25:6265–6272. https://doi.org/10.1007/s11356-017-0905-2

    Article  CAS  PubMed  Google Scholar 

  6. Park Y, Han J (2021) Blood lead levels and cardiovascular disease risk: results from the Korean National Health and Nutrition Examination Survey. Int J Environ Res Public Health 18:10315. https://doi.org/10.3390/ijerph181910315

  7. Choi S, Kwon J, Kwon P, Lee C, Jang SI (2020) Association between blood heavy metal levels and predicted 10-year risk for a first atherosclerosis cardiovascular disease in the general Korean population. Int J Environ Res Public Health 17:2134. https://doi.org/10.3390/ijerph17062134

  8. Duan W, Xu C, Liu Q, Xu J, Weng Z, Zhang X et al (2020) Levels of a mixture of heavy metals in blood and urine and all-cause, cardiovascular disease and cancer mortality: a population-based cohort study. Environ Pollut 263:114630. https://doi.org/10.1016/j.envpol.2020.114630

    Article  CAS  PubMed  Google Scholar 

  9. Yang AM, Lo K, Zheng TZ, Yang JL, Bai YN, Feng YQ et al (2020) Environmental heavy metals and cardiovascular diseases: status and future direction. Chronic Dis Transl Med 6:251–259. https://doi.org/10.1016/j.cdtm.2020.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  10. Guo X, Su W, Li N, Song Q, Wang H, Liang Q et al (2022) Association of urinary or blood heavy metals and mortality from all causes, cardiovascular disease, and cancer in the general population: a systematic review and meta-analysis of cohort studies. Environ Sci Pollut Res Int 29:67483–67503. https://doi.org/10.1007/s11356-022-22353-w

  11. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182. https://doi.org/10.1093/bmb/ldg032

    Article  PubMed  Google Scholar 

  12. Bao QJ, Zhao K, Guo Y, Wu XT, Yang JC, Yang MF (2022) Environmental toxic metal contaminants and risk of stroke: a systematic review and meta-analysis. Environ Sci Pollut Res Int 29:32545–32565. https://doi.org/10.1007/s11356-022-18866-z

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, Mo Z, Qin J, Li Q, Wei Y, Ma S et al (2015) Change of water sources reduces health risks from heavy metals via ingestion of water, soil, and rice in a riverine area, South China. Sci Total Environ 530–531:163–170. https://doi.org/10.1016/j.scitotenv.2015.05.100

    Article  CAS  PubMed  Google Scholar 

  14. Hou S, Zheng N, Tang L, Ji X, Li Y, Hua X (2019) Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ Int 128:430–437. https://doi.org/10.1016/j.envint.2019.04.046

    Article  CAS  PubMed  Google Scholar 

  15. Pan L, Wang Y, Ma J, Hu Y, Su B, Fang G et al (2018) A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ Sci Pollut Res Int 25:1055–1069. https://doi.org/10.1007/s11356-017-0513-1

    Article  CAS  PubMed  Google Scholar 

  16. Ekong EB, Jaar BG, Weaver VM (2006) Lead-related nephrotoxicity: a review of the epidemiologic evidence. Kidney Int 70:2074–2084. https://doi.org/10.1038/sj.ki.5001809

    Article  CAS  PubMed  Google Scholar 

  17. Prozialeck WC, Edwards JR, Woods JM (2006) The vascular endothelium as a target of cadmium toxicity. Life Sci 79:1493–1506. https://doi.org/10.1016/j.lfs.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  18. Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R et al (2014) 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129:S49-73. https://doi.org/10.1161/01.cir.0000437741.48606.98

    Article  PubMed  Google Scholar 

  19. Yang HS, LaFrance DR, Hao Y (2021) Elemental testing using inductively coupled plasma mass spectrometry in clinical laboratories. Am J Clin Pathol 156:167–175. https://doi.org/10.1093/ajcp/aqab013

    Article  CAS  PubMed  Google Scholar 

  20. Centers for Disease Control and Prevention (CDC) (2018) Cadmium, lead, manganese, mercury, and selenium lab procedure manual. https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/labmethods/PBCD-J-PBY-J-R-MET-508.pdf. Accessed 26 April 2022

  21. Yao B, Wang Y, Xu L, Lu X, Qu H, Zhou H (2020) Associations between copper and zinc and high blood pressure in children and adolescents aged 8–17 years: an exposure-response analysis of NHANES 2007–2016. Biol Trace Elem Res 198:423–429. https://doi.org/10.1007/s12011-020-02095-x

    Article  CAS  PubMed  Google Scholar 

  22. Clair C, Meigs JB, Rigotti NA (2013) Smoking behavior among US adults with diabetes or impaired fasting glucose. Am J Med 126:541.e15–8. https://doi.org/10.1016/j.amjmed.2012.11.029

    Article  PubMed  Google Scholar 

  23. Hicks CW, Wang D, Matsushita K, Windham BG, Selvin E (2021) Peripheral neuropathy and all-cause and cardiovascular mortality in U.S. adults : a prospective cohort study. Ann Intern Med 174:167–174. https://doi.org/10.7326/m20-1340

    Article  PubMed  Google Scholar 

  24. Oftedal S, Aguiar EJ, Duncan MJ (2021) Associations between multiple positive health behaviors and cardiometabolic risk using 3 alternative measures of physical activity: NHANES 2005–2006. Appl Physiol Nutr Metab 46:617–625. https://doi.org/10.1139/apnm-2020-0588

    Article  CAS  PubMed  Google Scholar 

  25. Scholes S, Bann D (2018) Education-related disparities in reported physical activity during leisure-time, active transportation, and work among US adults: repeated cross-sectional analysis from the National Health and Nutrition Examination Surveys, 2007 to 2016. BMC Public Health 18:926. https://doi.org/10.1186/s12889-018-5857-z

    Article  PubMed  PubMed Central  Google Scholar 

  26. Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, Davidson KW et al (2018) Behavioral weight loss interventions to prevent obesity-related morbidity and mortality in adults: US preventive services task force recommendation statement. JAMA 320:1163–1171. https://doi.org/10.1001/jama.2018.13022

    Article  PubMed  Google Scholar 

  27. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cheng YJ, Kanaya AM, Araneta MRG, Saydah SH, Kahn HS, Gregg EW et al (2019) Prevalence of diabetes by race and ethnicity in the United States, 2011–2016. JAMA 322:2389–2398. https://doi.org/10.1001/jama.2019.19365

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu M, Fan F, Liu B, Jia J, Jiang Y, Sun P et al (2020) Joint effects of plasma homocysteine concentration and traditional cardiovascular risk factors on the risk of new-onset peripheral arterial disease. Diabetes Metab Syndr Obes 13:3383–3393. https://doi.org/10.2147/dmso.S267122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Johnson CL, Paulose-Ram R, Ogden CL, Carroll MD, Kruszon-Moran D, Dohrmann SM et al (2013) National health and nutrition examination survey: analytic guidelines, 1999–2010. Vital Health Stat 2:1–24

    Google Scholar 

  31. Harari F, Barregard L, Östling G, Sallsten G, Hedblad B, Forsgard N et al (2019) Blood lead levels and risk of atherosclerosis in the carotid artery: results from a Swedish cohort. Environ Health Perspect 127:127002. https://doi.org/10.1289/ehp5057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barregard L, Sallsten G, Harari F, Andersson EM, Forsgard N, Hjelmgren O et al (2021) Cadmium exposure and coronary artery atherosclerosis: a cross-sectional population-based study of Swedish middle-aged adults. Environ Health Perspect 129:67007. https://doi.org/10.1289/ehp8523

    Article  CAS  PubMed  Google Scholar 

  33. Farkhondeh T, Afshari R, Mehrpour O, Samarghandian S (2020) Mercury and atherosclerosis: cell biology, pathophysiology, and epidemiological studies. Biol Trace Elem Res 196:27–36. https://doi.org/10.1007/s12011-019-01899-w

    Article  CAS  PubMed  Google Scholar 

  34. Asgary S, Movahedian A, Keshvari M, Taleghani M, Sahebkar A, Sarrafzadegan N (2017) Serum levels of lead, mercury and cadmium in relation to coronary artery disease in the elderly: A cross-sectional study. Chemosphere 180:540–544. https://doi.org/10.1016/j.chemosphere.2017.03.069

    Article  CAS  PubMed  Google Scholar 

  35. Cho HM, Cho DY, Kim MY, Yang SW, Seo YS, Kim KN (2016) Combined effect of blood cadmium and lead levels on coronary heart disease prediction risk in Korean men. Angiology 67:582–586. https://doi.org/10.1177/0003319715605954

    Article  CAS  PubMed  Google Scholar 

  36. Chen C, Li Q, Nie X, Han B, Chen Y, Xia F et al (2017) Association of lead exposure with cardiovascular risk factors and diseases in Chinese adults. Environ Sci Pollut Res Int 24:22275–22283. https://doi.org/10.1007/s11356-017-9884-6

    Article  CAS  PubMed  Google Scholar 

  37. Hu XF, Eccles KM, Chan HM (2017) High selenium exposure lowers the odds ratios for hypertension, stroke, and myocardial infarction associated with mercury exposure among Inuit in Canada. Environ Int 102:200–206. https://doi.org/10.1016/j.envint.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  38. Zhang T, Yin X, Zhang Y, Chen H, Man J, Li Y et al (2022) Global trends in mortality and burden of stroke attributable to lead exposure from 1990 to 2019. Front Cardiovasc Med 9:870747. https://doi.org/10.3389/fcvm.2022.870747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Borné Y, Fagerberg B, Persson M, Östling G, Söderholm M, Hedblad B et al (2017) Cadmium, carotid atherosclerosis, and incidence of ischemic stroke. J Am Heart Assoc 6:e006415. https://doi.org/10.1161/jaha.117.006415

  40. Söderholm M, Borné Y, Hedblad B, Persson M, Barregard L, Engström G (2020) Blood cadmium concentration and risk of subarachnoid haemorrhage. Environ Res 180:108826. https://doi.org/10.1016/j.envres.2019.108826

    Article  CAS  PubMed  Google Scholar 

  41. Chowdhury R, Ramond A, O’Keeffe LM, Shahzad S, Kunutsor SK, Muka T et al (2018) Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 362:k3310. https://doi.org/10.1136/bmj.k3310

    Article  PubMed  PubMed Central  Google Scholar 

  42. Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK (2021) Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere 262:128350. https://doi.org/10.1016/j.chemosphere.2020.128350

    Article  CAS  PubMed  Google Scholar 

  43. Mitra P, Sharma S, Purohit P, Sharma P (2017) Clinical and molecular aspects of lead toxicity: an update. Crit Rev Clin Lab Sci 54:506–528. https://doi.org/10.1080/10408363.2017.1408562

    Article  CAS  PubMed  Google Scholar 

  44. Ferreira de Mattos G, Costa C, Savio F, Alonso M, Nicolson GL (2017) Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. Biophys Rev 9:807–825. https://doi.org/10.1007/s12551-017-0303-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Protsenko YL, Klinova SV, Gerzen OP, Privalova LI, Minigalieva IA, Balakin AA et al (2020) Changes in rat myocardium contractility under subchronic intoxication with lead and cadmium salts administered alone or in combination. Toxicol Rep 7:433–442. https://doi.org/10.1016/j.toxrep.2020.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baghshani H, LotfiGhahramanloo M (2020) Evaluation of lead-induced cardiac toxicity in mice by measurement of selected biochemical as well as oxidative indices. Comp Clin Pathol 29:1165–1171. https://doi.org/10.1007/s00580-020-03166-0

    Article  CAS  Google Scholar 

  47. Javorac D, Tatović S, Anđelković M, Repić A, Baralić K, Djordjevic AB et al (2022) Low-lead doses induce oxidative damage in cardiac tissue: subacute toxicity study in Wistar rats and Benchmark dose modelling. Food Chem Toxicol 161:112825. https://doi.org/10.1016/j.fct.2022.112825

    Article  CAS  PubMed  Google Scholar 

  48. Chen QY, DesMarais T, Costa M (2019) Metals and mechanisms of carcinogenesis. Annu Rev Pharmacol Toxicol 59:537–554. https://doi.org/10.1146/annurev-pharmtox-010818-021031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rinaldi M, Micali A, Marini H, Adamo EB, Puzzolo D, Pisani A et al (2017) Cadmium, organ toxicity and therapeutic approaches: a review on brain, kidney and testis damage. Curr Med Chem 24:3879–3893. https://doi.org/10.2174/0929867324666170801101448

    Article  CAS  PubMed  Google Scholar 

  50. Zhang H, Reynolds M (2019) Cadmium exposure in living organisms: a short review. Sci Total Environ 678:761–767. https://doi.org/10.1016/j.scitotenv.2019.04.395

    Article  CAS  PubMed  Google Scholar 

  51. Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24:378–399. https://doi.org/10.1080/09603123.2013.835032

    Article  CAS  PubMed  Google Scholar 

  52. Alpsoy S, Kanter M, Aktas C, Erboga M, Akyuz A, Akkoyun DC et al (2014) Protective effects of onion extract on cadmium-induced oxidative stress, histological damage, and apoptosis in rat heart. Biol Trace Elem Res 159:297–303. https://doi.org/10.1007/s12011-014-9968-9

    Article  CAS  PubMed  Google Scholar 

  53. Nazimabashir MV, Miltonprabu S (2015) Cadmium induced cardiac oxidative stress in rats and its attenuation by GSP through the activation of Nrf2 signaling pathway. Chem Biol Interact 242:179–193. https://doi.org/10.1016/j.cbi.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  54. Chen CY, Zhang SL, Liu ZY, Tian Y, Sun Q (2015) Cadmium toxicity induces ER stress and apoptosis via impairing energy homoeostasis in cardiomyocytes. Biosci Rep 35:e00214. https://doi.org/10.1042/bsr2014017

  55. Notariale R, Infantino R, Palazzo E, Manna C (2021) Erythrocytes as a model for heavy metal-related vascular dysfunction: the protective effect of dietary components. Int J Mol Sci 22:6604. https://doi.org/10.3390/ijms22126604

  56. Jinadasa B, Jayasinghe G, Pohl P, Fowler SW (2021) Mitigating the impact of mercury contaminants in fish and other seafood-a review. Mar Pollut Bull 171:112710. https://doi.org/10.1016/j.marpolbul.2021.112710

    Article  CAS  PubMed  Google Scholar 

  57. Takahashi T, Shimohata T (2019) Vascular dysfunction induced by mercury exposure. Int J Mol Sci 20:2435. https://doi.org/10.3390/ijms20102435

  58. Genchi G, Sinicropi MS, Carocci A, Lauria G, Catalano A (2017) Mercury exposure and heart diseases. Int J Environ Res Public Health 14:74. https://doi.org/10.3390/ijerph14010074

  59. Omanwar S, Fahim M (2015) Mercury exposure and endothelial dysfunction: an interplay between nitric oxide and oxidative stress. Int J Toxicol 34:300–307. https://doi.org/10.1177/1091581815589766

    Article  CAS  PubMed  Google Scholar 

  60. Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X et al (2021) Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev 73:924–967. https://doi.org/10.1124/pharmrev.120.000096

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Zhang Jing (Shanghai Tongren Hospital) for his effort on the NHANES database. His outstanding work, NHANES R package and webpage, makes it easier for us to discover NHANES database.

Funding

This investigation was funded by grants from the National Natural Science Foundation of China (No. 81871359 and No. 82071944).

Author information

Authors and Affiliations

Authors

Contributions

Kai WANG: Conceptualization, Methodology, Software, Formal analysis, Writing – original draft, Visualization. Yukang MAO: Conceptualization, Methodology, Writing – review & editing, Visualization. Miao LU: Formal analysis, Data curation, Validation. Zheng LIU: Formal analysis, Software, Writing – review & editing. Yansong LI: Formal analysis, Methodology. Zhongming LI: Formal analysis, Data curation. Yan SUN: Data curation, Writing – review & editing. Yinzhang DING: Data curation, Writing – review & editing. Xianling LIU: Data curation. Jian HONG: Project administration, Funding acquisition, Writing-review and editing. Di XU and Jing ZHANG: Conceptualization, Methodology, Project administration, Funding acquisition, Writing – review & editing, Supervision.

Corresponding authors

Correspondence to Di Xu or Jing Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

NHANES Institutional Review Board approved the ethical conduct of NHANES 1999–2018, and all participants provided informed consent. The study procedures were structured in line with the Declaration of Helsinki.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12011_2022_3537_MOESM1_ESM.jpg

Supplementary figure 1 Unweighted restricted cubic spline analysis for the association between blood heavy metals and 10-year ASCVD risk. (A) Blood cadmium. (B) Blood lead. (C) Total blood mercury. Analyses were adjusted for education, annual family income, alcohol intake, eGFR, C-reactive protein, hemoglobin, physical activity, BMI, waist, triglyceride, LDL-C and uric acid. Abbreviations: ASCVD, atherosclerotic cardiovascular disease; BMI, body mass index; eGFR, estimated glomerular filtration rate; LDL-C, low-density lipoprotein cholesterol (JPG 928 KB)

Supplementary file2 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Mao, Y., Liu, Z. et al. Association of Blood Heavy Metal Exposure with Atherosclerotic Cardiovascular Disease (ASCVD) Among White Adults: Evidence from NHANES 1999–2018. Biol Trace Elem Res 201, 4321–4333 (2023). https://doi.org/10.1007/s12011-022-03537-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03537-4

Keywords

Navigation