Skip to main content
Log in

Associations of Dietary and Plasma Copper Levels with Liver Function in a Chinese Population

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The potential mechanisms underlying the association between copper (Cu) exposure and impaired liver function are unclear. This study aimed to investigate the potential associations of dietary Cu intake and plasma Cu levels with liver function biomarkers. A cross-sectional study was performed to assess liver function biomarkers—namely, levels of total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), alanine transaminase (ALT), and aspartate transaminase (AST)—in 2376 subjects in Guangxi, China. Dietary Cu intake was determined from a food frequency questionnaire containing 109 common foods. Plasma Cu concentrations were determined by inductively coupled plasma‒mass spectrometry. Multiple linear regression and multivariate restricted cubic splines (RCS) were used to evaluate the correlations of plasma Cu levels and dietary Cu levels with liver function biomarkers. The covariate-adjusted results of the linear regression analysis showed that plasma Cu levels were significantly negatively correlated with serum IBIL (β =  − 0.37), DBIL (β =  − 0.22), and TBIL levels (β =  − 0.32) (all p < 0.05), and dietary Cu was negatively correlated with serum AST levels (β =  − 0.12, p < 0.05). The RCS analysis further indicated a negative linear relationship between dietary Cu levels and AST levels. In summary, our results suggested that the plasma Cu level is associated with serum bilirubin levels and that dietary Cu intake is associated with serum AST levels. Further studies are needed to validate these associations and elucidate the underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wang C, Ma C, Gong LH, Guo YQ, Fu K, Zhang YF, Zhou HL, Li YX (2021) Macrophage polarization and its role in liver disease. Frontiers in Immunology 12. ARTN 80303710.3389/fimmu.2021.803037

  2. Wang FS, Fan JG, Zhang Z, Gao B, Wang HY (2014) The global burden of liver disease: the major impact of China. Hepatology 60(6):2099–2108. https://doi.org/10.1002/hep.27406

    Article  PubMed  Google Scholar 

  3. Zhao MD, Ge XY, Xu J, Li A, Mei YY, Yin GH, Wu JT, Liu XL, Wei LP, Xu Q (2022) Association between urine metals and liver function biomarkers in Northeast China: a cross-sectional study. Ecotox Environ Safe 231. ARTN 113163 https://doi.org/10.1016/j.ecoenv.2022.113163

  4. Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182. https://doi.org/10.1093/bmb/ldg032

    Article  PubMed  Google Scholar 

  5. Xu S, Pi H, Chen Y, Zhang N, Guo P, Lu Y, He M, Xie J, Zhong M, Zhang Y, Yu Z, Zhou Z (2013) Cadmium-induced Drp1-dependent mitochondrial fragmentation by disturbing calcium homeostasis in its hepatotoxicity. Cell Death Dis 4:e540. https://doi.org/10.1038/cddis.2013.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scheig R (1996) Evaluation of tests used to screen patients with liver disorders. Prim Care 23(3):551–560. https://doi.org/10.1016/s0095-4543(05)70347-x

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt E, Schmidt FW (1993) Enzyme diagnosis of liver diseases. Clin Biochem 26(4):241–251. https://doi.org/10.1016/0009-9120(93)90123-n

    Article  CAS  PubMed  Google Scholar 

  8. Hamoud AR, Weaver L, Stec DE, Hinds TD Jr (2018) Bilirubin in the liver-gut signaling axis. Trends Endocrinol Metab 29(3):140–150. https://doi.org/10.1016/j.tem.2018.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67(5 Suppl):952S-S959. https://doi.org/10.1093/ajcn/67.5.952S

    Article  CAS  PubMed  Google Scholar 

  10. Morrell A, Tallino S, Yu L, Burkhead JL (2017) The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life 69(4):263–270. https://doi.org/10.1002/iub.1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suzuki Y, Ogra Y, Machida N, Watanabe I (2019) Changes in copper, zinc, and cadmium distributions in the liver of Formosan squirrels with characteristic high copper accumulation. Metallomics 11(10):1753–1758. https://doi.org/10.1039/c9mt00204a

    Article  CAS  PubMed  Google Scholar 

  12. Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458. https://doi.org/10.1146/annurev.nutr.22.012502.114457

    Article  CAS  PubMed  Google Scholar 

  13. Yang Z, Li X, Tian L, Song Y, Zhang Y, Chen J, Zhang L (2021) Heavy metals exposure is associated with early liver dysfunction among rural residents aged 40–75 years in southwest China. J Appl Toxicol. https://doi.org/10.1002/jat.4276

    Article  PubMed  Google Scholar 

  14. Wang X, Bin W, Zhou M, Xiao L, Xu T, Yang S, Nie X, Xie L, Yu L, Mu G, Ma J, Chen W (2021) Systemic inflammation mediates the association of heavy metal exposures with liver injury: a study in general Chinese urban adults. J Hazard Mater 419:126497. https://doi.org/10.1016/j.jhazmat.2021.126497

    Article  CAS  PubMed  Google Scholar 

  15. Ge X, Liu Z, Hou Q, Huang L, Zhou Y, Li D, Huang S, Luo X, Lv Y, Li L, Cheng H, Chen X, Zan G, Tan Y, Liu C, Zou Y, Yang X (2020) Plasma metals and serum bilirubin levels in workers from manganese-exposed workers healthy cohort (MEWHC). Environ Pollut 258:113683. https://doi.org/10.1016/j.envpol.2019.113683

    Article  CAS  PubMed  Google Scholar 

  16. Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87(3):1011–1046. https://doi.org/10.1152/physrev.00004.2006

    Article  CAS  PubMed  Google Scholar 

  17. Aigner E, Theurl I, Haufe H, Seifert M, Hohla F, Scharinger L, Stickel F, Mourlane F, Weiss G, Datz C (2008) Copper availability contributes to iron perturbations in human nonalcoholic fatty liver disease. Gastroenterology 135(2):680–688. https://doi.org/10.1053/j.gastro.2008.04.007

    Article  CAS  PubMed  Google Scholar 

  18. Song M, Vos MB, McClain CJ (2018) Copper-fructose interactions: anovel mechanism in the pathogenesis of NAFLD. Nutrients 10(11). https://doi.org/10.3390/nu10111815

  19. Kumar V, Kalita J, Misra UK, Bora HK (2015) A study of dose response and organ susceptibility of copper toxicity in a rat model. J Trace Elem Med Biol 29:269–274. https://doi.org/10.1016/j.jtemb.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  20. Yang F, Pei R, Zhang Z, Liao J, Yu W, Qiao N, Han Q, Li Y, Hu L, Guo J, Pan J, Tang Z (2019) Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol In Vitro 54:310–316. https://doi.org/10.1016/j.tiv.2018.10.017

    Article  CAS  PubMed  Google Scholar 

  21. Yu W, Liao J, Yang F, Zhang H, Chang X, Yang Y, Bilal RM, Wei G, Liang W, Guo J, Tang Z (2021) Chronic tribasic copper chloride exposure induces rat liver damage by disrupting the mitophagy and apoptosis pathways. Ecotoxicol Environ Saf 212:111968. https://doi.org/10.1016/j.ecoenv.2021.111968

    Article  CAS  PubMed  Google Scholar 

  22. Aigner E, Strasser M, Haufe H, Sonnweber T, Hohla F, Stadlmayr A, Solioz M, Tilg H, Patsch W, Weiss G, Stickel F, Datz C (2010) A role for low hepatic copper concentrations in nonalcoholic fatty liver disease. Am J Gastroenterol 105(9):1978–1985. https://doi.org/10.1038/ajg.2010.170

    Article  CAS  PubMed  Google Scholar 

  23. Li S, Guo H, Liu Y, Wu F, Zhang H, Zhang Z, Xie Z, Sheng Z, Liao E (2015) Relationships of serum lipid profiles and bone mineral density in postmenopausal Chinese women. Clin Endocrinol (Oxf) 82(1):53–58. https://doi.org/10.1111/cen.12616

    Article  CAS  PubMed  Google Scholar 

  24. Wang CJ, Yang TF, Wang GS, Zhao YY, Yang LJ, Bi BN (2018) Association between dietary patterns and depressive symptoms among middle-aged adults in China in 2016–2017. Psychiat Res 260:123–129. https://doi.org/10.1016/j.psychres.2017.11.052

    Article  Google Scholar 

  25. Barak F, Falahi E, Keshteli AH, Yazdannik A, Saneei P, Esmaillzadeh A (2015) Red meat intake, insulin resistance, and markers of endothelial function among Iranian women. Mol Nutr Food Res 59(2):315–322. https://doi.org/10.1002/mnfr.201400333

    Article  CAS  PubMed  Google Scholar 

  26. Esfahani FH, Asghari G, Mirmiran P, Azizi F (2010) Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. J Epidemiol 20(2):150–158. https://doi.org/10.2188/jea.je20090083

    Article  PubMed  Google Scholar 

  27. YX Y (2019) Ingredient list of Chinese food. ActaNutrimenta Sinica 41(05):426

  28. Cai JS, Li Y, Liu SZ, Liu QM, Xu M, Zhang JL, Wei YF, Mo XT, Lin YX, Tang X, Mai TY, Mo CB, Luo TY, Huang SX, Lu HX, Zhang ZY, Qin J (2022) Associations between multiple heavy metals exposure and glycated hemoglobin in a Chinese population. Chemosphere 287. ARTN 132159 https://doi.org/10.1016/j.chemosphere.2021.132159

  29. Mo XT, Cai JS, Lin YX, Liu QM, Xu M, Zhang JL, Liu SZ, Wei CM, Wei YF, Huang SX, Mai TY, Tan DC, Lu HX, Luo TY, Gou RY, Zhang ZY, Qin J (2021) Correlation between urinary contents of some metals and fasting plasma glucose levels: a cross-sectional study in China. Ecotox Environ Safe 228. ARTN 112976 https://doi.org/10.1016/j.ecoenv.2021.112976

  30. Li ZY, Xu YL, Huang ZJ, Wei Y, Hou J, Long TF, Wang F, Hu H, Duan YY, Guo H, Zhang XM, Chen X, Yuan H, Wu TC, Shen MX, He MA (2019) Association between exposure to arsenic, nickel, cadmium, selenium, and zinc and fasting blood glucose levels. Environmental Pollution 255. ARTN 113325 https://doi.org/10.1016/j.envpol.2019.113325

  31. Bjorklund G, Dadar M, Pivina L, Dosa MD, Semenova Y, Aaseth J (2020) The role of zinc and copper in insulin resistance and diabetes mellitus. Curr Med Chem 27(39):6643–6657. https://doi.org/10.2174/0929867326666190902122155

    Article  CAS  PubMed  Google Scholar 

  32. Trumbo P, Yates AA, Schlicker S, Poos M (2001) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc 101(3):294–301. https://doi.org/10.1016/S0002-8223(01)00078-5

    Article  CAS  PubMed  Google Scholar 

  33. Ferns GA, Lamb DJ, Taylor A (1997) The possible role of copper ions in atherogenesis: the Blue Janus. Atherosclerosis 133(2):139–152. https://doi.org/10.1016/s0021-9150(97)00130-5

    Article  CAS  PubMed  Google Scholar 

  34. al-Othman AA, Rosenstein F, Lei KY, (1993) Copper deficiency increases in vivo hepatic synthesis of fatty acids, triacylglycerols, and phospholipids in rats. Proc Soc Exp Biol Med 204(1):97–103. https://doi.org/10.3181/00379727-204-43640

    Article  PubMed  Google Scholar 

  35. Peng YF, Wei YS (2017) Associations between serum bilirubin levels and essential trace elements status in an adult population. Oncotarget 8(46):81315–20. https://doi.org/10.18632/oncotarget.18351

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ayten R, Aygen E, Cerrahoglu YZ, Camci C, Ilhan YS, Girgin M, Ilhan N, Ozercan IH (2015) Effects of copper, zinc, and vitamin complex (Cernevit(R)) on hepatic healing in rats experimentally subjected to blunt hepatic trauma. Indian J Surg 77(Suppl 3):1045–1049. https://doi.org/10.1007/s12262-014-1128-0

    Article  PubMed  Google Scholar 

  37. Guicciardi ME, Malhi H, Mott JL, Gores GJ (2013) Apoptosis and necrosis in the liver. Compr Physiol 3(2):977–1010. https://doi.org/10.1002/cphy.c120020

    Article  PubMed  Google Scholar 

  38. Takaki A, Kawai D, Yamamoto K (2013) Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int J Mol Sci 14(10):20704–20728. https://doi.org/10.3390/ijms141020704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rolo AP, Teodoro JS, Palmeira CM (2012) Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med 52(1):59–69. https://doi.org/10.1016/j.freeradbiomed.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  40. Serviddio G, Bellanti F, Vendemiale G (2013) Free radical biology for medicine: learning from nonalcoholic fatty liver disease. Free Radic Biol Med 65:952–968. https://doi.org/10.1016/j.freeradbiomed.2013.08.174

    Article  CAS  PubMed  Google Scholar 

  41. Stern BR, Solioz M, Krewski D, Aggett P, Aw TC, Baker S, Crump K, Dourson M, Haber L, Hertzberg R, Keen C, Meek B, Rudenko L, Schoeny R, Slob W, Starr T (2007) Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships. J Toxicol Environ Health B Crit Rev 10(3):157–222. https://doi.org/10.1080/10937400600755911

    Article  CAS  PubMed  Google Scholar 

  42. Klevay LM (2000) Cardiovascular disease from copper deficiency–a history. J Nutr 130(2S Suppl):489S-S492. https://doi.org/10.1093/jn/130.2.489S

    Article  CAS  PubMed  Google Scholar 

  43. Bertinato J, Iskandar M, L’Abbe MR (2003) Copper deficiency induces the upregulation of the copper chaperone for Cu/Zn superoxide dismutase in weanling male rats. J Nutr 133(1):28–31. https://doi.org/10.1093/jn/133.1.28

    Article  CAS  PubMed  Google Scholar 

  44. Majewski M, Ognik K, Juskiewicz J (2019) Copper nanoparticles modify the blood plasma antioxidant status and modulate the vascular mechanisms with nitric oxide and prostanoids involved in Wistar rats. Pharmacol Rep 71(3):509–516. https://doi.org/10.1016/j.pharep.2019.02.007

    Article  CAS  PubMed  Google Scholar 

  45. Song M, Zhou Z, Chen T, Zhang J, McClain CJ (2011) Copper deficiency exacerbates bile duct ligation-induced liver injury and fibrosis in rats. J Pharmacol Exp Ther 339(1):298–306. https://doi.org/10.1124/jpet.111.184325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dongiovanni P, Lanti C, Riso P, Valenti L (2016) Nutritional therapy for nonalcoholic fatty liver disease. J Nutr Biochem 29:1–11. https://doi.org/10.1016/j.jnutbio.2015.08.024

    Article  CAS  PubMed  Google Scholar 

  47. Yamada T, Agui T, Suzuki Y, Sato M, Matsumoto K (1993) Inhibition of the copper incorporation into ceruloplasmin leads to the deficiency in serum ceruloplasmin activity in a Long-Evans cinnamon mutant rat. J Biol Chem 268(12):8965–8971

    Article  CAS  PubMed  Google Scholar 

  48. Fleming RE, Gitlin JD (1990) Primary structure of rat ceruloplasmin and analysis of tissue-specific gene expression during development. J Biol Chem 265(13):7701–7707

    Article  CAS  PubMed  Google Scholar 

  49. Medici V (2013) The evolving scenario of copper and fatty liver. Metab Syndr Relat Disord 11(1):4–6. https://doi.org/10.1089/met.2013.1501

    Article  CAS  PubMed  Google Scholar 

  50. Doguer C, Ha JH, Collins JF (2018) Intersection of iron and cpper metabolism in the mammalian intestine and liver. Compr Physiol 8(4):1433–1461. https://doi.org/10.1002/cphy.c170045

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chung SM, Moon JS, Yoon JS, Won KC, Lee HW (2020) The sex-specific effects of blood lead, mercury, and cadmium levels on hepatic steatosis and fibrosis: Korean nationwide cross-sectional study. J Trace Elem Med Biol 62:126601. https://doi.org/10.1016/j.jtemb.2020.126601

    Article  CAS  PubMed  Google Scholar 

  52. Lee MR, Lim YH, Lee BE, Hong YC (2017) Blood mercury concentrations are associated with decline in liver function in an elderly population: a panel study. Environ Health 16(1):17. https://doi.org/10.1186/s12940-017-0228-2

    Article  CAS  PubMed  Google Scholar 

  53. Li Y, Chen C, Lu L, Guo W, VanWagner LB, Shikany JM, Zhang S, Kahe K (2022) Cadmium exposure in young adulthood is associated with risk of nonalcoholic fatty liver disease in midlife. Dig Dis Sci 67(2):689–696. https://doi.org/10.1007/s10620-021-06869-8

    Article  CAS  PubMed  Google Scholar 

  54. Arredondo M, Nunez H, Lopez G, Pizarro F, Ayala M, Araya M (2010) Influence of estrogens on copper indicators: in vivo and in vitro studies. Biol Trace Elem Res 134(3):252–264. https://doi.org/10.1007/s12011-009-8475-x

    Article  CAS  PubMed  Google Scholar 

  55. Ayala M, Pizarro F, Mendez MA, Arredondo M, Araya M (2008) Copper and liver function indicators vary depending on the female hormonal cycle and serum hormone binding globulin (SHBG) concentration in healthy women. Biol Trace Elem Res 121(1):9–15. https://doi.org/10.1007/s12011-007-8029-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude for all the participants and cooperating units who helped to complete this study.

Funding

The study was supported by the National Natural Science Foundation of China (grant nos. 81960583, 81760577, and 81560523), Major Science and Technology Projects in Guangxi (GKAA22399), Guangxi Science and Technology Development Project (grant nos. AD 17129003 and 18050005), Guangxi Natural Science Foundation for Innovation Research Team (2019GXNSFGA245002), and Guangxi Scholarship Fund of Guangxi Education Department of China.

Author information

Authors and Affiliations

Authors

Contributions

YW: writing—original draft preparation and writing—review and editing; JC: investigation, data supervision, and project administration; MX and XM: investigation, and data curation; QL, JZ, SL, and YL: methodology and formal analysis; JQ: software and validation; SH: data curation; JQ: conceptualization and resources; and ZZ: writing—original draft preparation, writing—review and editing, investigation, data supervision, and project administration. All the authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jian Qin or Zhiyong Zhang.

Ethics declarations

Ethics Approval

Approval was obtained from the Ethics Committee of Guilin Medical University (No: 20180702–3). The procedures used in this study adhered to the tenets of the Declaration of Helsinki.

Consent to Participate

Written informed consent was obtained from all the participants before the study.

Conflict of Interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Cai, J., Mo, X. et al. Associations of Dietary and Plasma Copper Levels with Liver Function in a Chinese Population. Biol Trace Elem Res 201, 3268–3278 (2023). https://doi.org/10.1007/s12011-022-03445-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03445-7

Keywords

Navigation