Skip to main content
Log in

Human Neocortex Layer Features Evaluated by PIXE, STIM, and STXM Techniques

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The human neocortex has a cytoarchitecture composed of six layers with an intrinsic organization that relates to afferent and efferent pathways for a high functional specialization. Various histological, neurochemical, and connectional techniques have been used to study these cortical layers. Here, we explore the additional possibilities of swift ion beam and synchrotron radiation techniques to distinguish cellular layers based on the elemental distributions and areal density pattern in the human neocortex. Temporal cortex samples were obtained from two neurologically normal adult men (postmortem interval: 6–12 h). A cortical area of 500 × 500 μm2 was scanned by a 3 MeV proton beam for elemental composition and areal density measurements using particle induced x-ray emission (PIXE) and scanning transmission ion microscopy (STIM), respectively. Zinc showed higher values in cortical layers II and V, which needs a critical discussion. Furthermore, the areal density decreased in regions with a higher density of pyramidal neurons in layers III and V. Scanning transmission X-ray microscopy (STXM) revealed the cellular density with higher lateral resolution than STIM, but not enough to distinguish each cortical lamination border. Our data describe the practical results of these approaches employing both X-ray and ion-beam based techniques for the human cerebral cortex and its heterogeneous layers. These results add to the potential approaches and knowledge of the human neocortical gray matter in normal tissue to develop improvements and address further studies on pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available due to the conditions and rules of work of the laboratories where the samples were analyzed but are available from the corresponding author on reasonable request.

References

  1. Nieuwenhuys R, Voogd J, van Huijzen CHR (1988) The human central nervous system. Springer-Verlag, Berlin

    Book  Google Scholar 

  2. Kolb B, Whishaw IQ (2021) Fundamentals of human neuropsychology. Worth Publishers, New York

    Google Scholar 

  3. Rasia-Filho AA, Guerra KTK, Vásquez CE, Dall’Oglio A, Reberger R, Jung CR, Calcagnotto ME (2021) The subcortical-allocortical-neocortical continuum for the emergence and morphological heterogeneity of pyramidal neurons in the human brain. Front Synaptic Neurosci 13:607–616

    Article  Google Scholar 

  4. Pandya DN, Seltzer B, Petrides M, Cipolloni PB (2015) Cerebral cortex – architecture, connections, and the dual origin concept. Oxford University Press, New York

    Book  Google Scholar 

  5. Shepherd GM, Rowe TB (2017) Neocortical lamination: insights from neuron types and evolutionary precursors. Front Neuroanat 11(100):1–7

    Google Scholar 

  6. Scholtens L, Schmidt HR, de Reus MA, van den Heuvel MP (2014) Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J Neurosci 34(36):12192–12205

    Article  CAS  Google Scholar 

  7. Guy J, Staiger JF (2017) The functioning of a cortex without layers. Front Neuroanat 11(54):1–13

    Google Scholar 

  8. Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125:935–951

    Article  Google Scholar 

  9. Palomero-Gallagher N, Zilles K (2017) Cortical layers: cyto-, myelo-, receptor- and synaptic architecture in human cortical areas. Neuroimage S1053–8119:30682–30691

    Google Scholar 

  10. DeFelipe J (2011) The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat 5(29):1–17

    Google Scholar 

  11. Gahr M (1997) How should brain nuclei be delineated? Consequences for developmental mechanisms and for correlations of area size, neuron numbers and functions of brain nuclei. Trends Neurosci 20:58–62

    Article  CAS  Google Scholar 

  12. Lanciego JL, Wouterlood FG (2011) A half century of experimental neuroanatomical tracing. J Chem Neuroanat 42(3):157–183

    Article  Google Scholar 

  13. Hodge RD, Miller JA, Novotny M, Kalmbach BE, Ting JT, Bakken TE, Aevermann BD, Barkan ER, Berkowitz-Cerasano ML, Cobbs C, Diez-Fuertes F, Ding SL, McCorrison J, Schork NJ, Shehata SI, Smith KA, Sunkin SM, Tran DN, Venepally P, Yanny AM, Steemers FJ, Phillips JW, Bernard A, Koch C, Lasken RS, Scheuermann RH, Lein ES (2020) Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons. Nat Commun 11(1):1172

    Article  CAS  Google Scholar 

  14. Johansson SAE, Campbell JL, Malmqvist KG (1995) Particle-induced X-ray emission spectrometry (PIXE). John Wiley, New York

    Google Scholar 

  15. Stori EM, Souza CT, Dias JF (2016) Fabrication and analysis of polymer microstructures through ion microprobe techniques. J App Poly Sci 43253:1–10

    Google Scholar 

  16. Jobim PFC, dos Santos CEI, Maurmann N, Reolon G, Debastiani R, Pedroso TR, Carvalho LM, Dias JF (2014) Analysis of memory consolidation and evocation in rats by proton induced X-ray emission. Nucl Instrum Methods Phys Res B 332:224–228

    Article  CAS  Google Scholar 

  17. Jobim PFC, dos Santos CEI, Jeromel L, Pellicon P, Amaral L, Dias JF (2018) Changes in the element concentration of the dorsal hippocampus CA1 region during memory consolidation and reconsolidation. J Chem Neuroanat 90:49–56

    Article  CAS  Google Scholar 

  18. Zhang B, Ren M, Sheu FS, Watt F, Routtenberg A (2012) Quantitative analysis of zinc in rat hippocampal mossy fibers by nuclear microscopy. Neuros Res 74:17–24

    Article  CAS  Google Scholar 

  19. Boruchowska M, Lankosz M, Adamek D, Korman A (2001) PIXE analysis of human brain tissue. X Ray Spec 30:174–179

    Article  CAS  Google Scholar 

  20. Tilko G, Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2007) X-ray microanalysis of biological material in the frozen-hydrated state by PIXE. Micros Res Tech 70:55–68

    Article  Google Scholar 

  21. Stori EM, Souza CT, Amaral L, Fink D, Papaleo RM, Dias JF (2013) Use of STIM for morphological studies of microstructured polymer foils. Nuc Instrum Meth Phys Res 306:99–103

    Article  CAS  Google Scholar 

  22. Pascolo L, Gianoncelli A, Kaulich B, Rizzardi C, Schneider M, Bottin C, Polentarutti M, Kiskinova M, Longoni A, Melato M (2011) Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues. Part Fibre Toxicol 8(7):1–11

    Google Scholar 

  23. Pascolo L, Gianoncelli A, Schneider G, Salome M, Schneider M, Calligaro C, Kiskinova M, Melato M, Rizzardi C (2013) The interaction of asbestos and iron in lung tissue revealed by synchrotron-based scanning X-ray microscopy. Sci Rep 3(1123):1–11

    Google Scholar 

  24. Gianoncelli A, Kourousias G, Merolle L, Altissimo M, Bianco A (2016) Combining multiple imaging techniques at the TwinMic X-ray microscopy beamline. J Synchrotron Radiat 23(60):1526–1537

    Article  Google Scholar 

  25. Krebs N, Langkammer C, Goessler W, Ropelec S, Fazekas F, Yene K, Scheurer E (2014) Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry. J Trace Elem Med Biol 28:1–7

    Article  CAS  Google Scholar 

  26. Lins BR, Pushie JM, Jones M, Howard DL, Howland JG, Hackett MJ (2016) Mapping alterations to the endogenous elemental distribution within the lateral ventricles and choroid plexus in brain disorders using X-ray fluorescence imaging. PLoS ONE 11(6):e0158152. https://doi.org/10.1371/journal.pone.0158152

    Article  CAS  Google Scholar 

  27. Mai JK, Paxinos G, Voss T (2008) Atlas of the human brain. Academic Press, New York

    Google Scholar 

  28. Al-Ebraheem A, Dao E, Desouza E, Li C, Wainman BC, McNeill FE, Farquharson MJ (2015) Effect of sample preparation techniques on the concentrations and distributions of elements in biological tissues using μSRXRF: a comparative study. Physiol Meas 36:N51

    Article  CAS  Google Scholar 

  29. Ziegler J (2008) SRIM is a collection of software packages which calculate many features of the transport of ions in matter. https://www.srim.org. Accessed 11 October 2011

  30. Fernandes F, Niedraszewicz LAB, Amaral L, Dias JF (2018) Evaluation of detector efficiency through GUPIXWIN H value. Nucl Instrum Methods Phys Res B 417:56–59

    Article  CAS  Google Scholar 

  31. Campbell JL, Boyd NI, Grassi N, Bonnick P, Maxwell JA (2010) The Guelph PIXE software package IV. Nucl Instrum Methods Phys Res B 268:3356–3363

    Article  CAS  Google Scholar 

  32. Ryan CG (2000) Quantitative trace element imaging using PIXE and the nuclear microprobe. Imag Syst Tech 11:219–230

    Article  Google Scholar 

  33. Grime J (2017) Equipment and software for high energy ion microbeam applications OMDAQ. http://www.microbeams.co.uk/download.html. Accessed 20 May 2018

  34. Lobinski R, Moulin C, Ortega R (2006) Imaging and speciation of trace elements in biological environment. Biochimie 88:1591–1604

    Article  CAS  Google Scholar 

  35. Gigineishvili TV, Gegenava LG, Machavariani NA, Magradze NM (2007) Variations in the content of some trace elements and macroelements in the hippocampus of rats during learning and memory retrieval after destruction of the entorhinal cortex. Bull Exp Bio Med 143(6):667–669

    Article  CAS  Google Scholar 

  36. Serpa RFB, de Jesus EFO, Anjos MJ, de Oliveira LF, Marins LA, do Carmo MGT, Corrêa Junior JD, Rocha MS, Lopes RT, Martinez AMB (2008) Topographic trace-elemental analysis in the brain of Wistar rats by X-ray microfluorescence with synchrotron radiation. Anal Sci 24:839–842

    Article  CAS  Google Scholar 

  37. Boruchowska M, Lankosz M, Adamek D, Ostachowicz B, Ostachowicz J, Tomik B (2002) X-ray fluorescence analysis of human brain tissue and body fluids. Polish J Med Phys Eng 8(3):173–181

    Google Scholar 

  38. Rollenhagen A, Walkenfort B, Yakoubi R, Klauke SA, Schmuhl-Giesen SF, Heinen-Weiler J, Voortmann S, Marshallsay B, Palaz T, Holz U, Hasenberg M, Lübke JHR (2020) Synaptic organization of the human temporal lobe neocortex as revealed by high-resolution transmission, focused ion beam scanning, and electron microscopic tomography. Int J Mol Sci 21(15):5558, 1–27

    Article  Google Scholar 

  39. Montero-Crespo M, Dominguez-Alvaro M, Rondon-Carrillo P, Alonso-Nanclares L, DeFelipe J, Blazquez-Llorca L (2020) Three-dimensional synaptic organization of the human hippocampal CA1 field. Elife 9:e57013

    Article  CAS  Google Scholar 

  40. Assaf Y (2017) Imaging laminar structures in the gray matter with diffusion MRI. Neuroimage 17:31120–31125

    Google Scholar 

  41. Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2002) Micro-PIXE in plant sciences: present status and perspectives. Nucl Inst Met Phys Res B 189:470–481

    Article  Google Scholar 

  42. Vogel-Mikus K, Pongrac O, Primoz P (2015) Micro-PIXE elemental mapping for ionome studies of crop plants. Int J PIXE 249(3):217–233

    Google Scholar 

  43. Chwiej J, Szczerbowska-Boruchowska M, Lankosz M, Wojcik S, Falkenberg G, Stegowski Z, Setkowicz Z (2005) Preparation of tissue samples for X-ray fluorescence microscopy. Spectrochim Acta Part B: At Spectrosc 60(12):1531–1537

    Article  Google Scholar 

  44. Pushie MJ, Pickering IJ, Korbas M, Hackett MJ, George GN (2014) Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem Rev 114:8499–8541

    Article  CAS  Google Scholar 

  45. Pushie MJ, Hollings A, Reinhardt J, Webb SM, Lam V, Takechi R, Mamo JC, Paterson PG, Kelly ME, George GN, Pickering IJ, Hackett MJ (2020) Sample preparation with sucrose cryoprotection dramatically alters Zn distribution in the rodent hippocampus, as revealed by elemental mapping. J Anal At Spectrom 35(11):2498–2508

    Article  CAS  Google Scholar 

  46. Gellein K, Flaten TP, Erikson KM, Aschner M, Syversen T (2008) Leaching of trace elements from biological tissue by formalin fixation. Biol Trace Elem Res 121(3):221–225

    Article  CAS  Google Scholar 

  47. Alaverdashvili M, Hackett MJ, Pickering IJ, Paterson PG (2014) Laminar-specific distribution of zinc: evidence for presence of layer IV in forelimb motor cortex in the rat. Neuroimage 103:502–510

    Article  CAS  Google Scholar 

  48. Balaram P, Young NA, Kaas JH (2014) Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans. Eye Brain 6(1):5–18

    Article  Google Scholar 

  49. Cunha MML, Trepout S, Messaoudi C, Wu T, Ortega R, Guerquin-Kern J, Marco S (2016) Overview of chemical imaging methods to address biological questions. Micron 84:23–36

    Article  Google Scholar 

  50. Hackett MJ, McQuillan AJ, El-Assaad F, Aitken JB, Levina A, Cohen DD, Siegele R, Carter EA, Georges EG, Grau GE, Hunt NH, Lay PA (2011) Chemical alterations to murine brain tissue induced by formalin fixation: implications for biospectroscopic imaging and mapping studies of disease pathogenesis. Analyst 136:2941–2952

    Article  CAS  Google Scholar 

  51. Bush VJ, Moyer TP, Batts KP, Parisi JE (1995) Essential and toxic element concentrations in fresh and formalin-fixed human autopsy tissues. Clin Chem 4(2):284–294

    Article  Google Scholar 

  52. Tran H, Jan N, Hu D, Voorhees A, Schuman JS, Smith MA, Wollstein G, Sigal IA (2017) Formalin fixation and cryosectioning cause only minimal changes in shape or size of ocular tissues. Sci Rep 7(12065):1–11

    Google Scholar 

  53. Khalil R, Levitt JB (2017) Use of synaptic zinc histochemistry to reveal different regions and laminae in the developing and adult brain. J Vis Exp 128:e56547

    Google Scholar 

  54. Vergnano AM, Rebola N, Savtchenko LP, Pinheiro OS, Casado M, Kieffer BL, Rusakov DA, Mulle C, Paoletti P (2014) Zinc dynamics and action at excitatory synapses. Neuron 82(5):1101–1114

    Article  CAS  Google Scholar 

  55. Dall’Oglio A, Xavier LL, Hilbig A, Ferme D, Moreira JE, Achaval M, Rasia-Filho AA (2013) Cellular components of the human medial amygdaloid nucleus. J Comp Neurol 521:589–611

    Article  Google Scholar 

  56. Vásquez CE, Reberger R, Dall’Oglio A, Calcagnotto ME, Rasia-Filho AA (2018) Neuronal types of the human cortical amygdaloid nucleus. J Comp Neurol 526:2776–2801

    Article  Google Scholar 

  57. Lemelle L, Simionovici A, Colin P, Knott G, Bohic S, Cloetens P, Schneider BL (2020) Nano-imaging trace elements at organelle levels in substantia nigra overexpressing α-synuclein to model Parkinson’s disease. Commun Biol 3:364. https://doi.org/10.1038/s42003-020-1084-0

    Article  CAS  Google Scholar 

  58. Massimi L, Bukreeva I, Santamaria G, Fratini M, Corbelli A, Brun F, Fumagalli S, Maugeri L, Pacureanu A, Cloetens P, Pieroni N, Fiordaliso F, Forloni G, Uccelli A, Rosbo NK, Balducci C, Cedola A (2019) Exploring Alzheimer’s disease mouse brain through X-ray phase contrast tomography: from the cell to the organ. Neuroimage 184:490–495

    Article  Google Scholar 

  59. Hare DJ, New EJ, de Jongee MD, McColl G (2015) Imaging metals in biology: balancing sensitivity, selectivity and spatial resolution. Chem Soc Rev. https://doi.org/10.1039/c5cs00055f

    Article  Google Scholar 

  60. Hare DJ, New EJ (2016) On the outside looking in: redefining the role of analytical chemistry in the biosciences. Chem Commun. https://doi.org/10.1039/c6cc00128a

  61. New EJ, Wimmer VC, Hare DJ (2017) Promises and pitfalls of metal imaging in biology. Cell Chem Biol. https://doi.org/10.1016/j.chembiol.2017.10.006

    Article  Google Scholar 

  62. Miller LM, Dumas P (2006) Chemical imaging of biological tissue with synchrotron infrared light. Bioch Biophys Acta 1758:846–857

    Article  CAS  Google Scholar 

  63. Magnain C, Augustinack JC, Tirrell L, Fogarty M, Frosch MP, Boas D, Fischl B, Rockland KS (2019) Colocalization of neurons in optical coherence microscopy and Nissl-stained histology in Brodmann’s area 32 and area 21. Brain Struct Funct 224(1):351–362

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Gabriela Sena (UERJ, Brazil), Dr. Anja Kavčič (University of Ljubljana, Slovenia), and Mrs. Carla Calligaro (University of Udine, Italy) for the support during sample preparation for STXM and microPIXE.

Funding

To perform the research reported in this manuscript, Paulo Jobim received a Brazilian CNPq post-doctoral grant (# 150037/2017–1) and Carla dos Santos a CAPES fellowship grant (# POS-DOC 88881.119418/2016–01). Work at JSI was supported by the ARRS Grants J7-9398, N1-0090, P1-0112, I0-0005 and EU H2020 Project No. 824096 “RADIATE”.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, measurements, data collection and analysis, and manuscript preparation were performed by Paulo Fernandes Costa Jobim and Carla Eliete Iochims dos Santos; Alberto Antônio Rasia-Filho performed the sample collection and collaborated in the data analysis and manuscript preparation; Johnny Ferraz Dias contributed to the measurements, data analysis, and manuscript; Mitja Kelemen, Primož Pelicon, Katarina Vogel Mikuš, Lorella Pascolo, Alessandra Gianoncelli, and Diana Eva Bedolla contributed to the sample preparation, measurements, and data analysis. The first draft of the manuscript was written by Paulo Fernandes Costa Jobim and all the authors commented on the previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Paulo Fernandes Costa Jobim or Alberto Antônio Rasia-Filho.

Ethics declarations

Ethics Approval

This study followed the ethical procedures in accordance with international regulatory standards (based on the 1964 Helsinki Declaration) and were approved by the Ethics Committees of the Federal University of Health Sciences of Porto Alegre (Brazil; “Plataforma Brasil” process # 62381916.9.0000.5345/2018), and the Federal University of Rio Grande do Sul (Brazil; “Plataforma Brasil” process # 62381916.9.3001.5347/2017).

Consent to Participate

The next of kin provided written informed consent for brain donation and for use in this kind of study. Informed consent and general clinical data on known comorbidities were obtained from the next of kin at the morgue.

Consent for Publication

There is no potentially identifiable data for any individual included in this article.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jobim, P.F.C., Iochims dos Santos, C.E., Dias, J.F. et al. Human Neocortex Layer Features Evaluated by PIXE, STIM, and STXM Techniques. Biol Trace Elem Res 201, 592–602 (2023). https://doi.org/10.1007/s12011-022-03182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03182-x

Keywords

Navigation