Skip to main content

Advertisement

Log in

Nephroprotective Efficacy of Selenium and Zinc Against Potassium Dichromate-Induced Renal Toxicity in Pregnant Wistar Albino Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Hexavalent chromium (CrVI) compounds are potent toxicants commonly used in numerous industries. Thus, potential toxic effects and health hazards are of high relevance. Selenium (Se) and zinc (Zn) are known for their antioxidant and chemoprotective properties. However, little is known about their protective effects against CrVI-induced renal damage during pregnancy. In this context, the present study aimed to investigate the protective efficacy of these two essential elements against potassium dichromate-induced nephrotoxicity in pregnant Wistar Albino rats. Female rats were divided into control and four treated groups of six each receiving subcutaneously on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg, s.c. single dose) alone, or in association with Se (0.3 mg/kg, s.c. single dose), ZnCl2 (20 mg/kg, s.c. single dose) or both of them simultaneously. The nephrotoxic effects were monitored by the evaluation of plasma renal parameters, oxidative stress biomarkers, DNA damage, and renal Cr content. The obtained results showed that K2Cr2O7 disturbed renal biochemical markers, induced oxidative stress and DNA fragmentation in kidney tissues, and altered renal histoarchitecture. The co-administration of Se and/or ZnCl2 has exhibited pronounced chelative, antioxidant, and genoprotective effects against K2Cr2O7-induced renal damage and attenuated partially the histopathological alterations. These results suggest that Se and Zn can be used as efficient nephroprotective agents against K2Cr2O7-induced toxicity in pregnant Wistar Albino rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Alvarez CC, Bravo Gómez ME, Hernández Zavala A (2021) Hexavalent chromium: regulation and health effects. J Trace Elem Med Biol 65:126729. https://doi.org/10.1016/j.jtemb.2021.126729

    Article  CAS  PubMed  Google Scholar 

  2. Renu K, Chakraborty R, Myakala H et al (2021) Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium) - induced hepatotoxicity – a review. Chemosphere 271:129735. https://doi.org/10.1016/j.Chemosphere129735

    Article  CAS  PubMed  Google Scholar 

  3. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40

    Article  CAS  PubMed  Google Scholar 

  4. Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 34(1):1–32

    Article  CAS  PubMed  Google Scholar 

  5. Winczura A, Zdzalik D, Tudek B (2012) Damage of DNA and proteins by major lipid peroxidation products in genome stability. Free Radic Res 46(4):442–459

    Article  CAS  PubMed  Google Scholar 

  6. Salah I, Adjroud O, Elwej A (2021) Protective effects of selenium and zinc against nickel chloride–induced hormonal changes and oxidative damage in thyroid of pregnant rats. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02815-x

    Article  PubMed  Google Scholar 

  7. Krim M, Messaadia A, Maidi I, Aouacheri O, Saka S (2013) Protective effect of ginger against toxicity induced by chromate in rats. Ann Biol Clin (Paris) 71(2):165–173

    CAS  Google Scholar 

  8. Fedala A, Adjroud O, Saouli A, Salah I, Abid-Essefi S, Timoumi R (2021) Zinc alleviates potassium dichromate induced-hepatotoxicity in pregnant Wistar rats. Malays J Biochem Mol Biol 2:10–16

    Google Scholar 

  9. Banu SK, Samuel JB, Arosh JA, Burghardt RC, Aruldhas MM (2008) Lactational exposure to hexavalent chromium delays puberty by impairing ovarian development, steroidogenesis and pituitary hormone synthesis in developing Wistar rats. Toxicol Appl Pharmacol 232:180–189

    Article  CAS  PubMed  Google Scholar 

  10. Fedala A, Adjroud O, Abid-Essefi S, Timoumi R (2021) Protective effects of selenium and zinc against potassium dichromate–induced thyroid disruption, oxidative stress, and DNA damage in pregnant Wistar rats. Environ Sci Pollut Res 28(18):22563–22576. https://doi.org/10.1007/s11356-020-12268-9

    Article  CAS  Google Scholar 

  11. Stanley JA, Sivakumar KK, Nithy TK et al (2013) Postnatal exposure to chromium through mother’s milk accelerates follicular atresia in F1 offspring through increased oxidative stress and depletion of antioxidant enzymes. Free Radic Biol Med 61:179–196

    Article  CAS  PubMed  Google Scholar 

  12. Hegazy R, Mansour D, Salama A, Hassan A, Saleh D (2021) Exposure to intranasal chromium triggers dose and time-dependent behavioral and neurotoxicological defects in rats. Ecotoxicol Environ Saf 216: 112220.

  13. Goodarzi Z, Karami E, Ahmadizadeh M (2017) Simvastatin attenuates chromium-induced nephrotoxicity in rats. Nephropathol 6(1):5–9

    Article  Google Scholar 

  14. Patel JG, Joshi DV, Patel BJ, Raval SH (2017) Pathology of experimentally induced acute toxicity of potassium dichromate in Wistar rats (Rattus norvegicus). Indian J Vet Pathol 41(1):75–77

    Article  Google Scholar 

  15. Soudani N, Sefi M, Ben Amara I, Boudawara T, Zeghal N (2010) Protective effects of Selenium (Se) on Chromium (VI) induced nephrotoxicity in adult rats. Ecotoxicol Environ Saf 73(4):671–678

    Article  CAS  PubMed  Google Scholar 

  16. Barrera D, Maldonado PD, Medina-Campos ON, Hernández-Pando R, Ibarra-Rubio ME, Pedraza-Chaverrí J (2003) HO-1 induction attenuates renal damage and oxidative stress induced by K2Cr2O7. Free Radic Biol Med 34(11):1390–1398

    Article  CAS  PubMed  Google Scholar 

  17. Yeung AWK, Tzvetkov NT, El-Tawil OS, Bungǎu SG, Abdel-Daim MM, Atanasov AG (2019) Antioxidants: scientific literature landscape analysis. Oxid Med Cell Longev 8278454. https://doi.org/10.1155/2019/8278454

  18. Mehany HA, Abo-youssef AM, Ahmed LA, Arafa EA, Abd El-Latif HA (2013) Protective effect of vitamin E and atorvastatin against potassium dichromate-induced nephrotoxicity in rats. Beni-Suef Univ J Basic Appl Sci 2(2):96–102

    Google Scholar 

  19. Tabassum A, Bristow RG, Venkateswaran V (2010) Ingestion of selenium and other antioxidants during prostate cancer radiotherapy: a good thing? Cancer Treat Rev 36:230–234

    Article  CAS  PubMed  Google Scholar 

  20. Kim H, Park S, Suh JM, Chung HK, Shong M, Kwon OY (2001) Thyroid- stimulating hormone transcriptionally regulates the thiol-specific antioxidant gene. Cell Physiol Biochem 11:247–252

    Article  CAS  PubMed  Google Scholar 

  21. Sengul E, Gelen V, Yildirim S, Tekin S, Dag Y (2021) The Effects of selenium in acrylamide-induced nephrotoxicity in rats: roles of oxidative stress, inflammation, apoptosis, and DNA damage. Biol Trace Elem Res 199(1):173–184. https://doi.org/10.1007/s12011-020-02111-0

    Article  CAS  PubMed  Google Scholar 

  22. Mandour AS, Samir H, El-Beltagy MA et al (2020) Effect of supra-nutritional selenium-enriched probiotics on hematobiochemical, hormonal, and Doppler hemodynamic changes in male goats. Environ Sci Pollut Res Int 27(16):19447–19460

    Article  CAS  PubMed  Google Scholar 

  23. Barceloux DG. Zinc (1999) J Toxicol Clin Toxicol 37: 279- 292.

  24. Baltaci AK, Mogulkoc R, Baltaci SB (2019) The role of zinc in the endocrine system. Pak J Pharm Sci 32:231–239

    CAS  PubMed  Google Scholar 

  25. Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS, de Oliveira AR (2017) Zinc and oxidative stress: current mechanisms. Antioxidants (Basel) 6(2):24. https://doi.org/10.3390/antiox6020024

    Article  CAS  Google Scholar 

  26. Wang X, Anl Y, Jiao W et al (2018) Selenium protects against lead-induced apoptosis via endoplasmic reticulum stress in chicken kidneys. Biol Trace Elem Res 182:354–363

    Article  CAS  PubMed  Google Scholar 

  27. Messarah M, Klibet F, Boumendjel A et al (2012) Hepatoprotective role and antioxidant capacity of selenium on arsenic-induced liver injury in rats. Exp Toxicol Pathol 64:167–174

    Article  CAS  PubMed  Google Scholar 

  28. Messaoudi I, El Heni J, Hammouda F, Saïd K, Kerkeni A (2009) Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Elem Res 130:152–161

    Article  CAS  PubMed  Google Scholar 

  29. Adjroud O (2009) Effects of potassium dichromate on haematological parametrs in female and male wistar albino rats. Ass univ Bull environ Res 12:2

    Google Scholar 

  30. Adjroud O (2010) Protective effects of selenium against potassium dichromate-induced hematotoxicity in female and male Wistar albino rats. Ann Toxicol Anal 22:165–172

    Article  CAS  Google Scholar 

  31. Käkelä R, Käkelä A, Hyvärinen H (1999) Effects of nickel chloride on reproduction of the rat and possible antagonistic role of selenium. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 123:27–37

    Article  PubMed  Google Scholar 

  32. Adjroud O, Mouffok S (2009) Effects of nickel chloride on hematological and developmental parameters in Wistar albino pregnant rats. Ass Univ Bull Environ Res 12(1):1–9. https://doi.org/10.21608/auber.2009.149529.

  33. Paksy K, Varga B, Lázár P (1996) Zinc protection against cadmium-induced infertility in female rats. Effect of zinc and cadmium on the progesterone production of cultured granulosa cells. Biometals 10:27–36

    Article  Google Scholar 

  34. Nasiry Zarrin Ghabaee D, Talebpour Amiri F, Esmaeelnejad Moghaddam A, Khalatbary AR, Zargari M (2017) Administration of zinc against arsenic-induced nephrotoxicity during gestation and lactation in rat model. J Nephropathol 6(2):74–80

    Article  PubMed  Google Scholar 

  35. Fransion MA (1981) Standard methods for determination of wastes and waste water. Method No. 32(D), 15th ed. 225

  36. Bradford M (1979) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  Google Scholar 

  37. Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  38. Mercier Y, Gatellier P, Renerre M (2004) Lipid and protein oxidation in vivo, and antioxidant potential in meat from Charolais cows finished on pasture or mixed die. Meat Sci 66:467–473

    Article  CAS  PubMed  Google Scholar 

  39. Collins AR, Dusinská M, Gedik CM, Stĕtina R (1996) Oxidative damage to DNA: do we have a reliable biomarker? Environ Health Perspect 104:465–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  41. Beauchamp C (1971) Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  42. Clairbone A (1985) Catalase activity. Handbook of methods for oxygen radical research. CRC, Press Boca Rton FL 283- 284.

  43. Flohe L, Gunzler W (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  CAS  PubMed  Google Scholar 

  44. Bancroft JD, Gamble M (2008) Theory and practice of histological techniques. China. Churchill Livingstone, Elsevier

  45. Kotyzova D, Hodkova A, Bludovska M, Eybl V (2015) Effect of chromium (VI) exposure on antioxidant defense status and trace element homeostasis in acute experiment in rat. Toxicol Ind Health 31(11):1044–1050

    Article  CAS  PubMed  Google Scholar 

  46. Wedeen RP, Qian LF (1991) Chromium-induced kidney disease. Environ Health Perspect 92:71–74

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Saïd L, Banni M, Kerkeni A, Saïd K, Messaoudi I (2010) Influence of combined treatment with zinc and selenium on cadmium induced testicular pathophysiology in rat. Food Chem Toxicol 48(10):2759–2765. https://doi.org/10.1016/j.fct.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  48. Hammouda F, Messaoudi I, El Hani J, Baati T, Saïd K, Kerkeni A (2008) Reversal of cadmium-induced thyroid dysfunction by selenium, zinc, or their combination in rat. Biol Trace Elem Res 126:194–203

    Article  CAS  PubMed  Google Scholar 

  49. Girotti AW, Thomas JP, Jordan JE (1985) Inhibitory effect of zinc (II) on free radical lipid peroxidation in erythrocyte membranes. J Free Radic Biol Med 1:395–401

    Article  CAS  PubMed  Google Scholar 

  50. Zhang D, Liu J, Gao J, Shahzad M, Han Z et al (2014) Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells. PLoS ONE 9(8):e103427. https://doi.org/10.1371/journal.pone.0103427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yin J et al (2021) Pretreatment with selenium prevented the accumulation of hexavalent chromium in rainbow trout (Oncorhynchus mykiss) and reduced the potential health risk of fish consumption. Food Control 122:107817. https://doi.org/10.1016/j.foodcont.2020.107817

    Article  CAS  Google Scholar 

  52. Badiello R, Feroci G, Fini A (1996) Interaction between trace elements: selenium and cadmium ions. J Trace Elem Med Bio 10:156–162

    Article  CAS  Google Scholar 

  53. Zwolak I (2020) The role of selenium in arsenic and cadmium toxicity: an updated review of scientific literature. Biol Trace Elem Res 193(1):44–63. https://doi.org/10.1007/s12011-019-01691-w

    Article  CAS  PubMed  Google Scholar 

  54. El-Demerdash FM, El-Sayed RA, Abdel-Daim MM (2021) Rosmarinus officinalis essential oil modulates renal toxicity and oxidative stress induced by potassium dichromate in rats. J Trace Elem Med Biol 67: 126791

  55. Arreola-Mendoza L, Reyes J et al (2006) Alpha-tocopherol protects against the renal damage caused by potassium dichromate. Toxicology 218:237–246

    CAS  PubMed  Google Scholar 

  56. Salama A, Elmalt HA (2021) Aescin ameliorates acute kidney injury induced by potassium dichromate in rat: involvement of TLR 4/ TNF-α pathway. Egypt J Chem 64(4):2067–2074

    Google Scholar 

  57. Hegazy R, Salama A, Mansour D, Hassan A (2016) Renoprotective effect of lactoferrin against chromium-induced acute kidney injury in rats: involvement of IL-18 and IGF-1 inhibition. PLoS One 11 (3)

  58. Bashandy SA, Salama A, Fayed AHM et al (2020) Protective effect of mandarin (Citrus Reticulata) peel extract on potassium dichromate induced hepatotoxicity and nephrotoxicity in rats. Plant Archives 20(1):2231–2242

    Google Scholar 

  59. Adi PJ, Burra SP, Vataparti AR, Matcha B (2016) Calcium, zinc and vitamin E ameliorate cadmium-induced renal oxidative damage in albino Wistar rats. Toxicol Rep 29(3):591–597

    Article  CAS  Google Scholar 

  60. Stohs SJ, Bagchi D, Hassoun E, Bagchi M (2000) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 19(3):201–213

    CAS  PubMed  Google Scholar 

  61. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    Article  CAS  PubMed  Google Scholar 

  62. Chandra KA, Chatterjee A, Ghosh R, Sarkar M (2007) Effect of curcumin on chromium-induced oxidative damage in male reproductive system. Environ Toxicol Pharmacol 24(2):160–166

    Article  CAS  PubMed  Google Scholar 

  63. Travacio M, Polo JM, Llesuy S (2000) Chromium (VI) induces oxidative stress in the mouse brain. Toxicology 150(1–3):137–146

    Article  CAS  PubMed  Google Scholar 

  64. Saber TM, Farag MR, Cooper RG (2015) Ameliorative effect of extra virgin olive oil on hexavalent chromium induced nephrotoxicity and genotoxicity in rats. Revue de Médecine Vétérinaire 166(1–2):11–19

    CAS  Google Scholar 

  65. Sumner ER, Shanmuganathan A, Sideri TC, Willetts SA, Houghton JE, Avery SV (2005) Oxidative protein damage causes chromium toxicity in yeast. Microbiology 151:1939–1948

    Article  CAS  PubMed  Google Scholar 

  66. Mattagajasingh SN, Misra BR, Misra HP (2008) Carcinogenic chromium (VI)-induced protein oxidation and lipid peroxidation: implications in DNA–protein crosslinking. J Appl Toxicol 28:987–997

    Article  CAS  PubMed  Google Scholar 

  67. Ahmad MK, Syma S, Mahmood R (2011) Cr (VI) Induces lipid peroxidation, protein oxidation and alters the activities of antioxidant enzymes in human erythrocytes. Biol Trace Elem Res 144:426–435

    Article  CAS  PubMed  Google Scholar 

  68. Pedraza-Chaverri J, Yam-Canul P, Chirino YI et al (2008) Protective effects of garlic powder against potassium dichromate-induced oxidative stress and nephrotoxicity. Food Chem Toxicol 46(2):619–627

    Article  CAS  PubMed  Google Scholar 

  69. Ozturk A, Baltaci AK, Mogulkoc R et al (2003) Effects of zinc deficiency and supplementation on malondialdehyde and glutathione levels in blood and tissues of rats performing swimming exercise. Biol Trace Elem Res 94(2):157–166

    Article  CAS  PubMed  Google Scholar 

  70. Yildiz A, Kaya Y, Tanriverdi O (2019) Effect of the interaction between selenium and zinc on DNA repair in association with cancer prevention. J Cancer Prev 24(3):146–154

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cogun HY, Fırat O, Fırat O, Yüzereroǧlu TA (2012) Protective effect of selenium against mercury-induced toxicity on hematological and biochemical parameters of Oreochromis niloticus. J Biochem Mol Toxicol 26(3):117–122

    Article  CAS  PubMed  Google Scholar 

  72. Levis AG, Bianchi V (1982) Mutagenic and cytogenetic effects of chromium compounds. In: Langard S (ed) Biological and Environmental Aspect of Chromium. Elsevier Biomedical Press, New York, pp 171–207

    Chapter  Google Scholar 

  73. Khorsandi K, Rabbani-Chadegani A (2013) Studies on the genotoxic effect of chromium oxide (Cr VI): interaction with deoxyribonucleic acid in solution. Mutat Res 750(1–2):105–110

    Article  CAS  PubMed  Google Scholar 

  74. Monteiro C, Conceição S, Bastos V, Oliveira H (2019) Cr (VI)‐induced genotoxicity and cell cycle arrest in human osteoblast cell line MG‐63. J Appl Toxicol 1-9

  75. García-Rodríguez MDC, Carvente-Juárez MM, Altamirano-Lozano MA (2013) Antigenotoxic and apoptotic activity of green tea polyphenol extracts on hexavalent chromium-induced DNA damage in peripheral blood of CD-1 mice: analysis with differential acridine orange/ ethidium bromide staining. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2013/486419

  76. Patlolla AK, Barnes C, Yedjou C, Velma VR, Tchounwou PB (2009) Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats. Environ Toxicol 24(1):66–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ho E (2004) Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15:572–578

    Article  CAS  PubMed  Google Scholar 

  78. Bera S, De Rosa V, Rachidi W, Diamond AM (2013) Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention? Mutagenesis 28:127–134

    Article  CAS  PubMed  Google Scholar 

  79. Kubrak OI, Lushchak OV, Lushchak JV, Torous IM, Storey JM, Storey KB et al (2010) Chromium effects on free radical processes in goldfish tissues: comparison of Cr(III) and Cr(VI) exposures on oxidative stress markers, glutathione status and antioxidant enzymes. Comp Biochem Physiol Part C 152:360–370

    Google Scholar 

  80. Kim JH, Kang JC (2016) Oxidative stress, neurotoxicity, and metallothionein (MT) gene expression in juvenile rock fish Sebastes schlegelii under the different levels of dietary chromium(Cr6+) exposure. Ecotox Environ Safe 125:78–84

    Article  CAS  Google Scholar 

  81. Travacio M, Llesuy S (1996) Antioxidant enzymes and their modification under oxidative stress conditions. J Br Assoc Adv Sci 48:9–13

    CAS  Google Scholar 

  82. Othman AI, El Missiry MA (1999) Role of selenium against lead toxicity in male rats. J Biochem Mol Toxicol 12(6):345–349

    Article  Google Scholar 

  83. Atteia HH, Arafa MH, Prabahar K (2018) Selenium nanoparticles prevent lead acetate-induced hypothyroidism and oxidative damage of thyroid tissues in male rats through modulation of selenoenzymes and suppression of miR-224. Biomed Pharmacother 99:486–491

    Article  CAS  PubMed  Google Scholar 

  84. Flora SJS (2002) Nutritional components modify metal absorption, toxic response and chelation therapy. J Nutr Environ Med 12(1):53–67

    Article  CAS  Google Scholar 

  85. Whanger PD (1992) Selenium in the treatment of heavy metal poisoning and chemical carcinogenesis. J Trace Elem Electrolytes Health Dis 6(4):209–221

    CAS  PubMed  Google Scholar 

  86. Šulinskienė J, Bernotienė R, Baranauskienė D, Naginiene R, Staneviciene I, Kasauskas A et al (2019) Effect of zinc on the oxidative stress biomarkers in the brain of nickel-treated mice. Oxid Med Cell Longev. https://doi.org/10.1155/2019/8549727

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the DGRSDT/ MESRS (code: N ° E2212600).

Author information

Authors and Affiliations

Authors

Contributions

Anfal Fedala and Ounassa Adjroud designed the experiement; Anfal Fedala, Rim Timoumi, and Foughalia Abdelhamid performed the experiment; Anfal Fedala, Ounassa Adjroud, Omar Bennoune, Salwa Abid-Essefi, and Rim Timoumi analyzed the data; Anfal Fedala and Ounassa Adjroud wrote the manuscript; Ounassa Adjroud, Salwa Abid Essefi, and Omar Bennoune revised the manuscript, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Anfal Fedala.

Ethics declarations

Ethical Approval

All procedures were approved by the Institutional Animal Care and Use Committee of Batna University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedala, A., Adjroud, O., Bennoune, O. et al. Nephroprotective Efficacy of Selenium and Zinc Against Potassium Dichromate-Induced Renal Toxicity in Pregnant Wistar Albino Rats. Biol Trace Elem Res 200, 4782–4794 (2022). https://doi.org/10.1007/s12011-021-03069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03069-3

Keywords

Navigation