Skip to main content
Log in

Oral Subacute Exposure to Cadmium LOAEL Dose Induces Insulin Resistance and Impairment of the Hormonal and Metabolic Liver-Adipose Axis in Wistar Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium is a nonessential transition metal considered one of the more hazardous environmental contaminants. The population is chronically exposed to this metal at low concentrations, designated as the LOAEL (lowest observable adverse effect level) dose. We aimed to investigate whether oral subacute exposure to cadmium LOAEL disrupts hormonal and metabolic effects of the liver-adipose axis in Wistar rats. Fifty male Wistar rats were separated into two groups: control (standard normocalorie diet + water free of cadmium) and cadmium (standard normocalorie diet + drinking water with 32.5 ppm CdCl2). After 1 month, zoometry, a serum lipid panel, adipokines, and proinflammatory cytokines were evaluated. Tests of glucose and insulin tolerance (ITT) and insulin resistance were performed. Histological studies on structure, triglyceride distribution, and protein expression of the insulin pathway were performed in the liver and retroperitoneal adipose tissue. In both tissues, the cadmium, triglyceride, glycogen, and proinflammatory cytokine contents were also quantified. The cadmium group developed dyslipidemia, glucose intolerance, hyperinsulinemia, hyperleptinemia, inflammation, and selective insulin resistance in the liver and adipose tissue. In the liver, glycogen synthesis was diminished, while de novo lipogenesis increased, which was associated with low GSK3β-pS9 and strong expression of SREBP-1c. Dysfunctional adipose tissue was observed with hypertrophy and lipolysis, without changes in SREBP-1c expression and low glycogen synthesis. Both tissues accumulated cadmium and developed inflammation. In conclusion, oral subacute cadmium LOAEL dose exposure induces inflammation, insulin signaling modifications, an early insulin resistance stage (insensibility), and impairment of the hormonal and metabolic liver-adipose axis in Wistar rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. ATSDR (2012) Toxicological profile for cadmium. Agency Toxic Subst Dis Regist Public Heal Serv US Dep Heal Hum Serv 2012:1–487

    Google Scholar 

  2. Moulis J-M, Thévenod F (2010) New perspectives in cadmium toxicity: an introduction. BioMetals 23:763–768. https://doi.org/10.1007/s10534-010-9365-6

    Article  CAS  PubMed  Google Scholar 

  3. Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208. https://doi.org/10.1016/j.taap.2009.04.020

    Article  CAS  PubMed  Google Scholar 

  4. Satarug S, Nishijo M, Ujjin P, Moore MR (2018) Chronic exposure to low-level cadmium induced zinc-copper dysregulation. J Trace Elem Med Biol 46:32–38. https://doi.org/10.1016/j.jtemb.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  5. Treviño S, Waalkes MP, Flores Hernández JA et al (2015) Chronic cadmium exposure in rats produces pancreatic impairment and insulin resistance in multiple peripheral tissues. Arch Biochem Biophys 583:27–35. https://doi.org/10.1016/j.abb.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  6. Sarmiento-Ortega VE, Treviño S, Flores-Hernández JÁ et al (2017) Changes on serum and hepatic lipidome after a chronic cadmium exposure in Wistar rats. Arch Biochem Biophys 635:52–59. https://doi.org/10.1016/j.abb.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  7. Santamaria-Juarez C, Atonal-Flores F, Diaz A et al (2020) Aortic dysfunction by chronic cadmium exposure is linked to multiple metabolic risk factors that converge in anion superoxide production. Arch Physiol Biochem 1–9. https://doi.org/10.1080/13813455.2020.1726403

  8. Barregard L, Bergström G, Fagerberg B (2013) Cadmium exposure in relation to insulin production, insulin sensitivity and type 2 diabetes: a cross-sectional and prospective study in women. Environ Res 121:104–109. https://doi.org/10.1016/J.ENVRES.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  9. Fitzgerald R, Olsen A, Nguyen J et al (2020) Pancreatic islets accumulate cadmium in a rodent model of cadmium-induced hyperglycemia. Int J Mol Sci 22:1–16. https://doi.org/10.3390/IJMS22010360

    Article  Google Scholar 

  10. Chapatwala KD, Rajanna E, Desaiah D (1980) Cadmium Induced Changes in Gluconeogenic Enzymes in Rat Kidney and Liver. Drug Chem Toxicol 3:407–420. https://doi.org/10.3109/01480548009030129

    Article  CAS  PubMed  Google Scholar 

  11. Chapatwala KD, Hobson M, Desaiah D, Rajanna B (1982) Effect of cadmium on hepatic and renal gluconeogenic enzymes in female rats. Toxicol Lett 12:27–34. https://doi.org/10.1016/0378-4274(82)90194-1

    Article  CAS  PubMed  Google Scholar 

  12. Jacquet A, Arnaud J, Hininger-Favier I, Hazane-Puch F, Couturier K, Lénon M, Lamarche F, Ounnas F, Fontaine E, Jean-Marc Moulis CD (2018) Impact of chronic and low cadmium exposure of rats: sex specific disruption of glucose metabolism. Chemosphere 207:764–773. https://doi.org/10.1016/j.chemosphere.2018.05.099

    Article  CAS  PubMed  Google Scholar 

  13. Ayoub N, Mantash H, Dhaini HR et al (2021) Serum cadmium levels and risk of metabolic syndrome: a cross-sectional study. Biol Trace Elem Res 199:3625–3633. https://doi.org/10.1007/S12011-020-02502-3

    Article  CAS  PubMed  Google Scholar 

  14. Jacquet A, Barbeau D, Arnaud J, Hijazi S, Hazane-Puch F, Lamarche F, Quiclet C, Couturier K, Fontaine E, Jean-Marc Moulis CD (2019) Impact of maternal low-level cadmium exposure on glucose and lipid metabolism of the litter at different ages after weaning. Chemosphere 219:109–121. https://doi.org/10.1016/j.chemosphere.2018.11.137

    Article  CAS  PubMed  Google Scholar 

  15. Han JC, Park SY, Hah BG, Choi GH, Kim YK, Kwon TH, Kim EK, Lachaal M, Jung WL CY (2003) Cadmium induces impaired glucose tolerance in rat by down-regulating GLUT4 expression in adipocytes. Arch Biochem Biophys 413:213–220. https://doi.org/10.1016/s0003-9861(03)00120-6

    Article  CAS  PubMed  Google Scholar 

  16. Treviño S, Diaz A (2020) Vanadium and insulin: Partners in metabolic regulation. J Inorg Biochem 208:111094

    Article  Google Scholar 

  17. Moslehi A, Hamidi-Zad Z (2018) Role of SREBPs in liver diseases: a mini-review. J Clin Transl Hepatol 6:332–338

    Article  Google Scholar 

  18. Wang Y, Viscarra J, Kim SJ, Sul HS (2015) Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol 16:678–689

    Article  CAS  Google Scholar 

  19. Mashek DG (2013) Hepatic fatty acid trafficking: multiple forks in the road. Adv Nutr 4:697–710

    Article  CAS  Google Scholar 

  20. Tiwari S, Siddiqi SA (2012) Intracellular trafficking and secretion of VLDL. Arterioscler Thromb Vasc Biol 32:1079–1086

    Article  CAS  Google Scholar 

  21. Onal G, Kutlu O, Gozuacik D, Dokmeci Emre S (2017) Lipid droplets in health and disease. Lipids Health Dis 16:128

    Article  Google Scholar 

  22. Olzmann JA, Carvalho P (2019) Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol 20:137–155

    Article  CAS  Google Scholar 

  23. Kioumourtzoglou D, Pryor PR, Gould GW, Bryant NJ (2015) Alternative routes to the cell surface underpin insulin-regulated membrane trafficking of GLUT4. J Cell Sci 128:2423–2429. https://doi.org/10.1242/jcs.166561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuri-Harcuch W, Velez-delValle C, Vazquez-Sandoval A et al (2019) A cellular perspective of adipogenesis transcriptional regulation. J Cell Physiol 234:1111–1129

    Article  CAS  Google Scholar 

  25. de Sá Mota P, Richard AJ, Hang H, Stephens JM (2017) Transcriptional regulation of adipogenesis. Compr Physiol 7:635–674. https://doi.org/10.1002/cphy.c160022

    Article  Google Scholar 

  26. Frühbeck G, Catalán V, Rodríguez A, Gómez-Ambrosi J (2018) Adiponectin-leptin ratio: a promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte 7:57–62

    Article  Google Scholar 

  27. Blüher M, Mantzoros CS (2015) From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century. Metabolism. 64:131–145

    Article  Google Scholar 

  28. Turer AT, Scherer PE (2012) Adiponectin: mechanistic insights and clinical implications. Diabetologia 55:2319–2326

    Article  CAS  Google Scholar 

  29. Achari AE, Jain SK (2017) Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 18:1321

    Article  Google Scholar 

  30. Thomas D, Apovian C (2017) Macrophage functions in lean and obese adipose tissue. Metabolism. 72:120–143

    Article  CAS  Google Scholar 

  31. Chait A, den Hartigh LJ (2020) Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med 7:22. https://doi.org/10.3389/fcvm.2020.00022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matulewicz N, Karczewska-Kupczewska M (2016) Insulin resistance and chronic inflammation. Postepy Hig Med Dosw (Online) 70:1245–1258

    Google Scholar 

  33. Asghar A, Sheikh N (2017) Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell Immunol 315:18–26

    Article  CAS  Google Scholar 

  34. Sarmiento-Ortega V, Brambila E, Flores-Hernández J et al (2018) The NOAEL metformin dose is ineffective against metabolic disruption induced by chronic cadmium exposure in Wistar rats. Toxics 6:55. https://doi.org/10.3390/toxics6030055

    Article  CAS  PubMed Central  Google Scholar 

  35. Martin SS, Blaha MJ, Elshazly MB et al (2013) Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. JAMA - J Am Med Assoc 310:2061–2068. https://doi.org/10.1001/jama.2013.280532

    Article  CAS  Google Scholar 

  36. Abdul-Ghani MA, Molina-Carrion M, Jani R et al (2008) Adipocytes in subjects with impaired fasting glucose and impaired glucose tolerance are resistant to the anti-lipolytic effect of insulin. Acta Diabetol 45:147–150. https://doi.org/10.1007/s00592-008-0033-z

    Article  CAS  PubMed  Google Scholar 

  37. Treviño S, Sánchez-Lara E, Sarmiento-Ortega VE et al (2015) Hypoglycemic, lipid-lowering and metabolic regulation activities of metforminium decavanadate (H2Metf) 3 [V10O28]·8H2O using hypercaloric-induced carbohydrate and lipid deregulation in Wistar rats as b. J Inorg Biochem 147:85–92. https://doi.org/10.1016/j.jinorgbio.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  38. Sarmiento-Ortega VE, Moroni-González D, Díaz A et al (2021) Sodium metavanadate treatment improves glycogen levels in multiple tissues in a model of metabolic syndrome caused by chronic cadmium exposure in Wistar rats. BioMetals. https://doi.org/10.1007/s10534-020-00276-8

  39. Treviño S, Díaz A, Sánchez-Lara E et al (2018) Pharmacological and Toxicological Threshold of Bisammonium Tetrakis 4-(N,N-Dimethylamino)pyridinium Decavanadate in a Rat Model of Metabolic Syndrome and Insulin Resistance. Bioinorg Chem Appl 2018:2151079. https://doi.org/10.1155/2018/2151079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwartz GG, Il’yasova D, Ivanova A (2003) Urinary cadmium, impaired fasting glucose, and diabetes in the NHANES III. Diabetes Care 26:468–470. https://doi.org/10.2337/diacare.26.2.468

    Article  CAS  PubMed  Google Scholar 

  41. Xiong X, Zhang Y, Xing H, Xu S (2019) Ameliorative Effect of Selenomethionine on Cadmium-Induced Hepatocyte Apoptosis via Regulating PI3K/AKT Pathway in Chickens. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01858-5

  42. Hildebrand J, Thakar S, Watts TL et al (2019) The impact of environmental cadmium exposure on type 2 diabetes risk: A protocol for an overview of systematic reviews. Syst Rev 8:309. https://doi.org/10.1186/s13643-019-1246-7

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fatima G, Raza AM, Hadi N et al (2019) Cadmium in human diseases: it’s more than just a mere metal. Indian J Clin Biochem 34:371–378

    Article  CAS  Google Scholar 

  44. Shin D, Eom YS, Chon S et al (2019) Factors influencing insulin sensitivity during hyperinsulinemic-euglycemic clamp in healthy Korean male subjects. Diabetes, Metab Syndr Obes Targets Ther 12:469–476. https://doi.org/10.2147/DMSO.S195350

    Article  CAS  Google Scholar 

  45. Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: Common threads and missing links. Cell 148:852–871

    Article  CAS  Google Scholar 

  46. Samuel VT, Shulman GI (2016) The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 126:12–22. https://doi.org/10.1172/JCI77812

    Article  PubMed  PubMed Central  Google Scholar 

  47. Horita S, Nakamura M, Suzuki M et al (2016) Selective insulin resistance in the kidney. Biomed Res Int 2016:5825170

    Article  Google Scholar 

  48. Gehart H, Kumpf S, Ittner A, Ricci R (2010) MAPK signalling in cellular metabolism: Stress or wellness? EMBO Rep 11:834–840

    Article  CAS  Google Scholar 

  49. Fang X, Yu SX, Lu Y et al (2000) Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A 97:11960–11965. https://doi.org/10.1073/pnas.220413597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98:2133–2223

    Article  CAS  Google Scholar 

  51. Eberlé D, Hegarty B, Bossard P et al (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86:839–848

    Article  Google Scholar 

  52. Owen JL, Zhang Y, Bae SH et al (2012) Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proc Natl Acad Sci U S A 109:16184–16189. https://doi.org/10.1073/pnas.1213343109

    Article  PubMed  PubMed Central  Google Scholar 

  53. Haeusler RA, Hartil K, Vaitheesvaran B et al (2014) Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat Commun 5:5190. https://doi.org/10.1038/ncomms6190

    Article  CAS  PubMed  Google Scholar 

  54. Benedict M, Zhang X (2017) Non-alcoholic fatty liver disease: an expanded review. World J Hepatol 9:715–732

    Article  Google Scholar 

  55. Marchisello S, Di Pino A, Scicali R et al (2019) Pathophysiological, molecular and therapeutic issues of nonalcoholic fatty liver disease: An overview. Int J Mol Sci 20:1948. https://doi.org/10.3390/ijms20081948

    Article  CAS  PubMed Central  Google Scholar 

  56. Tanase DM, Gosav EM, Costea CF et al (2020) The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD). J Diabetes Res 2020:3920196

    Article  Google Scholar 

  57. Bashir N, Shagirtha K, Manoharan V, Miltonprabu S (2019) The molecular and biochemical insight view of grape seed proanthocyanidins in ameliorating cadmium-induced testes-toxicity in rat model: Implication of PI3K/Akt/Nrf-2 signaling. Biosci Rep 39:BSR20180515. https://doi.org/10.1042/BSR20180515

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shati AA, Alfaifi MY (2019) Trans-resveratrol inhibits tau phosphorylation in the brains of control and cadmium chloride-treated rats by activating PP2A and PI3K/Akt induced-inhibition of GSK3β. Neurochem Res 44:357–373. https://doi.org/10.1007/s11064-018-2683-8

    Article  CAS  PubMed  Google Scholar 

  59. Xin C, Guangliang S, Qing Z et al (2020) Astilbin protects chicken peripheral blood lymphocytes from cadmium-induced necroptosis via oxidative stress and the PI3K/Akt pathway. Ecotoxicol Environ Saf 190:110064. https://doi.org/10.1016/j.ecoenv.2019.110064

    Article  CAS  PubMed  Google Scholar 

  60. Rajanna B, Hobson M, Reese J et al (1984) Chronic hepatic and renal toxicity by cadmium in rats. Drug Chem Toxicol 7:229–241. https://doi.org/10.3109/01480548409035105

    Article  CAS  PubMed  Google Scholar 

  61. Larregle EV, Varas SM, Oliveros LB et al (2008) Lipid metabolism in liver of rat exposed to cadmium. Food Chem Toxicol 46:1786–1792. https://doi.org/10.1016/j.fct.2008.01.018

    Article  CAS  PubMed  Google Scholar 

  62. Prabu SM, Shagirtha K, Renugadevi J (2010) Amelioration of cadmium-induced oxidative stress, impairment in lipids and plasma lipoproteins by the combined treatment with quercetin and α-tocopherol in rats. J Food Sci 75:T132–T140. https://doi.org/10.1111/j.1750-3841.2010.01757.x

    Article  CAS  PubMed  Google Scholar 

  63. Hammarstedt A, Gogg S, Hedjazifar S et al (2018) Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol Rev 98:1911–1941. https://doi.org/10.1152/physrev.00034.2017

    Article  CAS  PubMed  Google Scholar 

  64. Zhu S, Sun F, Li W et al (2011) Apelin stimulates glucose uptake through the PI3K/Akt pathway and improves insulin resistance in 3T3-L1 adipocytes. Mol Cell Biochem 353:305–313. https://doi.org/10.1007/s11010-011-0799-0

    Article  CAS  PubMed  Google Scholar 

  65. Tsuchiya A, Kanno T, Nishizaki T (2014) PI3 kinase directly phosphorylates Akt1/2 at Ser473/474 in the insulin signal transduction pathway. J Endocrinol 220:49–59. https://doi.org/10.1530/JOE-13-0172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yaribeygi H, Simental-Mendía LE, Barreto GE, Sahebkar A (2019) Metabolic effects of antidiabetic drugs on adipocytes and adipokine expression. J Cell Physiol 234:16987–16997

    Article  CAS  Google Scholar 

  67. Summers SA, Whiteman EL, Birnbaum MJ (2000) Insulin signaling in the adipocyte. Int J Obes 24:S67–S70. https://doi.org/10.1038/sj.ijo.0801509

    Article  CAS  Google Scholar 

  68. Arner E, Westermark PO, Spalding KL et al (2010) Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 59:105–109. https://doi.org/10.2337/db09-0942

    Article  CAS  PubMed  Google Scholar 

  69. White U, Ravussin E (2019) Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia 62:17–23

    Article  Google Scholar 

  70. Horton JD, Shimomura I, Ikemoto S et al (2003) Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. J Biol Chem 278:36652–36660. https://doi.org/10.1074/jbc.M306540200

    Article  CAS  PubMed  Google Scholar 

  71. Frühbeck G, Méndez-Giménez L, Fernández-Formoso JA et al (2014) Regulation of adipocyte lipolysis. Nutr Res Rev 27:63–93. https://doi.org/10.1017/S095442241400002X

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Y, Su X, Dong Y et al (2020) Cytological and functional characteristics of fascia adipocytes in rats: a unique population of adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158585. https://doi.org/10.1016/j.bbalip.2019.158585

    Article  CAS  PubMed  Google Scholar 

  73. Rutkowski JM, Stern JH, Scherer PE (2015) The cell biology of fat expansion. J Cell Biol 208:501–512

    Article  CAS  Google Scholar 

  74. Haczeyni F, Bell-Anderson KS, Farrell GC (2018) Causes and mechanisms of adipocyte enlargement and adipose expansion. Obes Rev 19:406–420

    Article  CAS  Google Scholar 

  75. Kusminski CM, Bickel PE, Scherer PE (2016) Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov 15:639–660

    Article  CAS  Google Scholar 

  76. Eckel N, Mühlenbruch K, Meidtner K et al (2015) Characterization of metabolically unhealthy normal-weight individuals: risk factors and their associations with type 2 diabetes. Metabolism 64:862–871. https://doi.org/10.1016/J.METABOL.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  77. Tinkov AA, Filippini T, Ajsuvakova OP et al (2018) Cadmium and atherosclerosis: a review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environ Res 162:240–260. https://doi.org/10.1016/J.ENVRES.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  78. Hossein-Khannazer N, Azizi G, Eslami S et al (2020) The effects of cadmium exposure in the induction of inflammation. Immunopharmacol Immunotoxicol 42:1–8

    Article  CAS  Google Scholar 

  79. Moynihan M, Telléz-Rojo MM, Colacino J et al (2019) Prenatal cadmium exposure is negatively associated with adiposity in girls not boys during adolescence. Front Public Healh 7:61. https://doi.org/10.3389/FPUBH.2019.00061

    Article  Google Scholar 

  80. Van Cauwenberghe J, Den Hond E, Schoeters G et al (2014) Prenatal exposure to environmental contaminants and body composition at age 7-9 years. Environ Res 132:24–32. https://doi.org/10.1016/J.ENVRES.2014.03.019

    Article  PubMed  Google Scholar 

  81. Reilly SM, Saltiel AR (2017) Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol 13:633–643

    Article  CAS  Google Scholar 

  82. Longo M, Zatterale F, Naderi J et al (2019) Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci 20:2358. https://doi.org/10.3390/ijms20092358

    Article  CAS  PubMed Central  Google Scholar 

  83. Gustafson B, Gogg S, Hedjazifar S et al (2009) Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am J Physiol Endocrinol Metab 297:E999–E1003

    Article  CAS  Google Scholar 

  84. Laurencikiene J, Van Harmelen V, Nordström EA et al (2007) NF-κB is important for TNF-α-induced lipolysis in human adipocytes. J Lipid Res 48:1069–1077. https://doi.org/10.1194/jlr.M600471-JLR200

    Article  CAS  PubMed  Google Scholar 

  85. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184. https://doi.org/10.1172/JCI29881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oliveira AG, Araujo TG, Carvalho BM et al (2013) Acute exercise induces a phenotypic switch in adipose tissue macrophage polarization in diet-induced obese rats. Obesity 21:2545–2556. https://doi.org/10.1002/oby.20402

    Article  CAS  PubMed  Google Scholar 

  87. Park SE, Park CY, Sweeney G (2015) Biomarkers of insulin sensitivity and insulin resistance: past, present and future. Crit Rev Clin Lab Sci 52:180–190

    Article  CAS  Google Scholar 

  88. Olszowski T, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2012) Pro-inflammatory properties of cadmium. Acta Biochim Pol 59:475–482

    Article  CAS  Google Scholar 

  89. Kataranovski M, Janković S, Kataranovski D et al (2009) Gender differences in acute cadmium-induced systemic inflammation in rats. Biomed Environ Sci 22:1–7. https://doi.org/10.1016/S0895-3988(09)60014-3

    Article  CAS  PubMed  Google Scholar 

  90. Zhang J, Wang Y, Fu L et al (2019) Chronic cadmium exposure induced hepatic cellular stress and inflammation in aged female mice. J Appl Toxicol 39:498–509. https://doi.org/10.1002/jat.3742

    Article  CAS  PubMed  Google Scholar 

  91. Huang YY, Xia MZ, Wang H et al (2014) Cadmium selectively induces MIP-2 and COX-2 through PTEN-mediated akt activation in RAW264.7 cells. Toxicol Sci 138:310–321. https://doi.org/10.1093/toxsci/kfu013

    Article  CAS  PubMed  Google Scholar 

  92. Ali I, Damdimopoulou P, Stenius U, Halldin K (2015) Cadmium at nanomolar concentrations activates Raf-MEK-ERK1/2 MAPKs signaling via EGFR in human cancer cell lines. Chem Biol Interact 231:44–52. https://doi.org/10.1016/j.cbi.2015.02.014

    Article  CAS  PubMed  Google Scholar 

  93. Souza V, del Carmen Escobar M, Bucio L et al (2009) NADPH oxidase and ERK1/2 are involved in cadmium induced-STAT3 activation in HepG2 cells. Toxicol Lett 187:180–186. https://doi.org/10.1016/j.toxlet.2009.02.021

    Article  CAS  PubMed  Google Scholar 

  94. Escobar MDC, Souza V, Bucio L et al (2009) MAPK activation is involved in cadmium-induced Hsp70 expression in HepG2 cells. Toxicol Mech Methods 19:503–509. https://doi.org/10.3109/15376510903325670

    Article  CAS  Google Scholar 

  95. Liu C, Zhu Y, Lu Z et al (2020) Cadmium induces acute liver injury by inhibiting Nrf2 and the role of NF-κB, NLRP3, and MAPKS signaling pathway. Int J Environ Res Public Health 17:138. https://doi.org/10.3390/ijerph17010138

    Article  CAS  Google Scholar 

  96. Genchi G, Sinicropi MS, Lauria G et al (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17:3782. https://doi.org/10.3390/IJERPH17113782

    Article  CAS  PubMed Central  Google Scholar 

  97. Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24:378–399. https://doi.org/10.1080/09603123.2013.835032

    Article  CAS  PubMed  Google Scholar 

  98. Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S (2020) Back to nucleus: combating with cadmium toxicity using Nrf2 Signaling pathway as a promising therapeutic target. Biol Trace Elem Res 197:52–62. https://doi.org/10.1007/S12011-019-01980-4

    Article  CAS  PubMed  Google Scholar 

  99. Dai S, Yin Z, Yuan G et al (2013) Quantification of metallothionein on the liver and kidney of rats by subchronic lead and cadmium in combination. Environ Toxicol Pharmacol 36:1207–1216. https://doi.org/10.1016/J.ETAP.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  100. Sabolić I, Breljak D, Skarica M, Herak-Kramberger CM (2010) Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 23:897–926. https://doi.org/10.1007/S10534-010-9351-Z

    Article  PubMed  Google Scholar 

  101. Gupta DK, Pena LB, Romero-Puertas MC et al (2017) NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. Plant Cell Environ 40:509–526. https://doi.org/10.1111/PCE.12711

    Article  CAS  PubMed  Google Scholar 

  102. Okoye CN, MacDonald-Jay N, Kamunde C (2019) Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption. Aquat Toxicol 214:105264. https://doi.org/10.1016/J.AQUATOX.2019.105264

    Article  CAS  PubMed  Google Scholar 

  103. Cannino G, Ferruggia E, Luparello C, Rinaldi AM (2009) Cadmium and mitochondria. Mitochondrion 9:377–384. https://doi.org/10.1016/J.MITO.2009.08.009

    Article  CAS  PubMed  Google Scholar 

  104. Beyrami M, Karimi E, Oskoueian E (2020) Synthesized chrysin-loaded nanoliposomes improves cadmium-induced toxicity in mice. Environ Sci Pollut Res Int 27:40643–40651. https://doi.org/10.1007/S11356-020-10113-7

    Article  CAS  PubMed  Google Scholar 

  105. Zhang D, Gao J, Zhang K et al (2012) Effects of chronic cadmium poisoning on Zn, Cu, Fe, Ca, and metallothionein in liver and kidney of rats. Biol Trace Elem Res 149:57–63. https://doi.org/10.1007/S12011-012-9394-9

    Article  CAS  PubMed  Google Scholar 

  106. Pal M, Febbraio MA, Lancaster GI (2016) The roles of c-Jun NH2-terminal kinases (JNKs) in obesity and insulin resistance. J Physiol 594:267–279. https://doi.org/10.1113/JP271457

    Article  CAS  PubMed  Google Scholar 

  107. Solinas G, Becattini B (2017) JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab 6:174–184

    Article  CAS  Google Scholar 

  108. Schmitz-Peiffer C, Laybutt DR, Burchfield JG et al (2007) Inhibition of PKCε Improves Glucose-Stimulated Insulin Secretion and Reduces Insulin Clearance. Cell Metab 6:320–328. https://doi.org/10.1016/j.cmet.2007.08.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Vicerrectoria de Investigación y Posgrado (VIEP; TRMS-NAT19-1) through Ygnacio Martınez Laguna, CONACyT, and the “Sistema Nacional de Investigadores” of Mexico for the financial support of this research project (VESO, 533291) and Dr. Francisco Ramos Collazo (Bioterio “Claude Bernard”, BUAP) for his assistance and the donation of the animals used in this work. We express our gratitude to the Clinical Laboratory “Los Ángeles” for the biochemical determinations. The workgroup is grateful to Jesús Alberto Abrego Maldonado and Álan Josué Rodríguez Velázquez for their help to histological processing and analysis. We thank Professor Thomas Edwards, Ph.D., for editing the English language text.

Funding

CONACyT and the “Sistema Nacional de Investigadores” of Mexico for the financial support of this research project [VESO, 533291].

Author information

Authors and Affiliations

Authors

Contributions

Victor Enrique Sarmiento-Ortega, Eduardo Brambila, and Samuel Treviño designed the study and wrote the protocol. Victor Enrique Sarmiento-Ortega, Alfonso Díaz, Diana Moroni-González, and Samuel Treviño performed the experiments. Victor Enrique Sarmiento-Ortega, Eduardo Brambila, and Samuel Treviño managed the literature searches and analysis. Eduardo Brambila and Diana Moroni-González undertook the statistical analysis. Alfonso Díaz, Victor Enrique Sarmiento-Ortega, Eduardo Brambila, and Samuel Treviño wrote the first draft of the manuscript. All contributing authors have approved the final manuscript.

Corresponding author

Correspondence to Treviño Samuel.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmiento-Ortega, V.E., Moroni-González, D., Díaz, A. et al. Oral Subacute Exposure to Cadmium LOAEL Dose Induces Insulin Resistance and Impairment of the Hormonal and Metabolic Liver-Adipose Axis in Wistar Rats. Biol Trace Elem Res 200, 4370–4384 (2022). https://doi.org/10.1007/s12011-021-03027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03027-z

Keywords

Navigation