Skip to main content
Log in

Associations of Serum Calcium, Magnesium Levels, and Their Ratio with Apolipoproteins in Chinese Adults with Coronary Artery Disease: a Cross-Sectional Study

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Former evidence regarding the associations of serum calcium (Ca) and magnesium (Mg) levels with apolipoproteins (Apos) in Chinese adults with coronary artery disease (CAD) were scarce. A total of 6781 patients with CAD were included in this cross-sectional study; mean age was 61.0 years. The associations of serum Ca, Mg, and Ca/Mg ratio with Apos (e.g., ApoA1, ApoB, and ApoB/A1 ratio) were determined using multivariate analysis of covariance. Serum Ca, Mg, and Ca/Mg ratio tended to have positive associations with ApoA1, while negative associations of serum Ca, Mg, and Ca/Mg ratio with ApoB and ApoB/A1 ratio were detected. In multivariate analysis, serum Ca, Mg, and Ca/Mg ratio were positively associated with ApoA1 levels (Q [quintile] 5 vs. Q1: 1.245 vs. 1.151 g/L for Ca, 1.207 vs. 1.188 g/L for Mg, 1.202 vs. 1.171 g/L for Ca/Mg ratio). In contrast, negative associations of serum Mg and Ca/Mg ratio with ApoB and ApoB/A1 ratio were shown. The corresponding ApoB and ApoB/A1 ratio values were 0.856 (vs. 0.887 g/L) and 0.728 (vs. 0.771) for Mg, and 0.814 (vs. 0.854 g/L) and 0.695 (vs. 0.751) for Ca/Mg ratio in Q5 compared with Q1. Serum Ca was inversely associated with ApoB and ApoB/A1 ratio (Q5 vs. Q4: 0.804 vs. 0.847 g/L for ApoB; Q5 vs. Q1: 0.662 vs. 0.732 for ApoB/A1 ratio). Path analysis showed that mediating effects of BMI on the “Ca or Mg-Apos” associations were not found. In summary, serum Ca and Mg tended to have positive associations with ApoA1 levels in patients with CAD, but had inverse associations with ApoB levels and ApoB/A1 ratio. Serum Ca/Mg ratio may be a more precise marker than serum Mg or serum Ca measures alone in assessing Apos measures of CAD risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code Availability

The code is available from the corresponding author on request.

References

  1. GBD 2013 Mortality and Causes of Death Collaborators (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385:117–171. https://doi.org/10.1016/S0140-6736(14)61682-2

    Article  Google Scholar 

  2. Hu ST, Gao RL, Liu LS, Zhu ML, Wang W, Wang YJ, Wu ZS, Li HJ, Gu DF, Yang YJ, Zheng Z, Chen WW (2019) Summary of the 2018 report on cardiovascular diseases in China. Chin Circ J 34:209–219

    Google Scholar 

  3. Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S (2019) A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol 234:16812–16823. https://doi.org/10.1002/jcp.28350

    Article  CAS  PubMed  Google Scholar 

  4. Alloubani A, Nimer R, Samara R (2020) Relationship between hyperlipidemia, cardiovascular disease and stroke: a systematic review. Curr Cardiol Rev. https://doi.org/10.2174/1573403X16999201210200342

    Article  Google Scholar 

  5. Kearney PM, Blackwell L, Collins R, Keech A, Simes J, Peto R, Armitage J, Baigent C (2008) Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371:117–125. https://doi.org/10.1016/S0140-6736(08)60104-X

    Article  CAS  PubMed  Google Scholar 

  6. Brown JC, Gerhardt TE, Kwon E (2021) Risk factors for coronary artery disease. In StatPearls. StatPearls Publishing, Treasure Island

    Google Scholar 

  7. Rader DJ, Hoeg JM, Brewer HB Jr (1994) Quantitation of plasma apolipoproteins in the primary and secondary prevention of coronary artery disease. Ann Intern Med 120:1012–1025. https://doi.org/10.7326/0003-4819-120-12-199406150-00008

    Article  CAS  PubMed  Google Scholar 

  8. Cochran BJ, Ong KL, Manandhar B, Rye KA (2021) APOA1: a protein with multiple therapeutic functions. Curr Atheroscler Rep 23:11. https://doi.org/10.1007/s11883-021-00906-7

    Article  CAS  PubMed  Google Scholar 

  9. Burnett JR, Hooper AJ, Hegele RA (2021) APOB-related familial hypobetalipoproteinemia. In: GeneReviews® [Internet]. University of Washington, Seattle, 1993–2021

  10. Chen Z, Eggerman TL, Potosky D, Arborati M, Patterson AP (2000) Calcium increases apolipoprotein B mRNA editing. Biochem Biophys Res Commun 277:221–227. https://doi.org/10.1006/bbrc.2000.3668

    Article  CAS  PubMed  Google Scholar 

  11. Nassir F, Mazur A, Giannoni F, Gueux E, Davidson NO, Rayssiguier Y (1995) Magnesium deficiency modulates hepatic lipogenesis and apolipoprotein gene expression in the rat. Biochim Biophys Acta 1257:125–132. https://doi.org/10.1016/0005-2760(95)00065-k

    Article  PubMed  Google Scholar 

  12. Brownawell AM, Creutz CE (1996) Calcium-dependent binding of the plasma protein apolipoprotein A-I to two members of the annexin family. Biochemistry 35:6839–6845. https://doi.org/10.1021/bi952585t

    Article  CAS  PubMed  Google Scholar 

  13. Ziniewicz HK, Gesteiro E, González-Muñoz MJ, Bastida S, Sánchez-Muniz FJ (2014) Relationships between serum calcium and magnesium levels and lipoproteins, homocysteine and insulin resistance/sensitivity markers at birth. Nutr Hosp 31:278–285. https://doi.org/10.3305/nh.2015.31.1.8007

    Article  PubMed  Google Scholar 

  14. Bastida S, Vaquero MP, Veldhuizen M, Sánchez-Muniz FJ (2000) Selected trace elements and minerals in cord blood: association with lipids and lipoproteins at birth. Acta Paediatr 89:1201–1206. https://doi.org/10.1080/080352500750027574

    Article  CAS  PubMed  Google Scholar 

  15. Kim J, Hwang JY, Kim KN, Choi YJ, Chang N, Huh KB (2013) Relationship between milk and calcium intake and lipid metabolism in female patients with type 2 diabetes. Yonsei Med J 54:626–636. https://doi.org/10.3349/ymj.2013.54.3.626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schulpis KH, Karakonstantakis T, Bartzeliotou A, Karikas GA, Papassotiriou I (2004) The association of serum lipids, lipoproteins and apolipoproteins with selected trace elements and minerals in phenylketonuric patients on diet. Clin Nutr 23:401–407. https://doi.org/10.1016/j.clnu.2003.09.006

    Article  CAS  PubMed  Google Scholar 

  17. Nozue T, Kobayashi A, Uemasu F, Takagi Y, Sako A, Endoh H (1995) Magnesium status, serum HDL cholesterol, and apolipoprotein A-1 levels. J Pediatr Gastroenterol Nutr 20:316–318. https://doi.org/10.1097/00005176-199504000-00009

    Article  CAS  PubMed  Google Scholar 

  18. Yavuz T, Yavuz O, Ozdemir I, Afşar Y (2006) Cord blood lipoprotein profile after magnesium sulphate treatment in pre-eclamptic patients. Acta Paediatr 95:1224–1227. https://doi.org/10.1080/08035250600589017

    Article  PubMed  Google Scholar 

  19. Haenni A, Ohrvall M, Lithell H (1998) Atherogenic lipid fractions are related to ionized magnesium status. Am J Clin Nutr 67:202–207. https://doi.org/10.1093/ajcn/67.2.202

    Article  CAS  PubMed  Google Scholar 

  20. Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V (2019) Obesity and dyslipidemia. Metabolism 92:71–81. https://doi.org/10.1016/j.metabol.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  21. El-Zeftawy M, Ali SAM, Salah S, Hafez HS (2020) The functional nutritional and regulatory activities of calcium supplementation from eggshell for obesity disorders management. J Food Biochem 44:e13313. https://doi.org/10.1111/jfbc.13313

    Article  CAS  PubMed  Google Scholar 

  22. Asbaghi O, Hosseini R, Boozari B, Ghaedi E, Kashkooli S, Moradi S (2021) The effects of magnesium supplementation on blood pressure and obesity measure among type 2 diabetes patient: a systematic review and meta-analysis of randomized controlled trials. Biol Trace Elem Res 199:413–424

    Article  Google Scholar 

  23. Chrastny V, Komarek M (2009) Copper determination using ICPMS with hexapole collision cell. Chem Pap 63:512–519. https://doi.org/10.2478/s11696-009-0057-z

    Article  CAS  Google Scholar 

  24. Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51:1173–1182. https://doi.org/10.1037//0022-3514.51.6.1173

    Article  CAS  PubMed  Google Scholar 

  25. Strobl W, Widhalm K, Kostner G, Pollak A (1983) Serum apolipoproteins and lipoprotein (a) during the first week of life. Acta Paediatr Scand 72:505–509. https://doi.org/10.1111/j.1651-2227.1983.tb09761.x

    Article  CAS  PubMed  Google Scholar 

  26. Nagasaka H, Chiba H, Kikuta H, Akita H, Takahashi Y, Yanai H, Hui SP, Fuda H, Fujiwara H, Kobayashi K (2002) Unique character and metabolism of high density lipoprotein (HDL) in fetus. Atherosclerosis 161:215–223. https://doi.org/10.1016/s0021-9150(01)00663-3

    Article  CAS  PubMed  Google Scholar 

  27. Averna MR, Barbagallo CM, Di Paola G, Labisi M, Pinna G, Marino G, Dimita U, Notarbartolo A (1991) Lipids, lipoproteins and apolipoproteins AI, AII, B, CII, CIII and E in newborns. Biol Neonate 60:187–192. https://doi.org/10.1159/000243407

    Article  CAS  PubMed  Google Scholar 

  28. van Biervliet JP, Rosseneu M, Bury J, Caster H, Stul MS, Lamote R (1986) Apolipoprotein and lipid composition of plasma lipoproteins in neonates during the first month of life. Pediatr Res 20:324–328. https://doi.org/10.1203/00006450-198604000-00009

    Article  PubMed  Google Scholar 

  29. Resnick L (1999) The cellular ionic basis of hypertension and allied clinical conditions. Prog Cardiovasc Dis 42:1–22

    Article  CAS  Google Scholar 

  30. Rosanoff A, Capron E, Barak P (2015) Edible plant tissue and soil calcium:magnesium ratios: data too sparse to assess implications for human health. Crop Pasture Sci 66:1265–1277

    Article  CAS  Google Scholar 

  31. Atwater I, Beigelman PM (1976) Dynamic characteristics of electrical activity in pancreatic beta-cells. I. - Effects of calcium and magnesium removal. J Physiol (Paris) 72:769–786

    CAS  Google Scholar 

  32. Jorde R, Sundsfjord J, Fitzgerald P, Bønaa KH (1999) Serum calcium and cardiovascular risk factors and disease. The Tromsø Study Hypertension 34:484–490. https://doi.org/10.1161/01.hyp.34.3.484

    Article  CAS  PubMed  Google Scholar 

  33. Kivelä AM, Dijkstra MH, Heinonen SE, Gurzeler E, Jauhiainen S, Levonen AL, Ylä-Herttuala S (2012) Regulation of endothelial lipase and systemic HDL cholesterol levels by SREBPs and VEGF-A. Atherosclerosis 225:335–340. https://doi.org/10.1016/j.atherosclerosis.2012.09.039

    Article  CAS  PubMed  Google Scholar 

  34. Ma KY, Yang N, Jiao R, Peng C, Guan L, Huang Y, Chen ZY (2011) Dietary calcium decreases plasma cholesterol by down-regulation of intestinal Niemann-Pick C1 like 1 and microsomal triacylglycerol transport protein and up-regulation of CYP7A1 and ABCG 5/8 in hamsters. Mol Nutr Food Res 55:247–258. https://doi.org/10.1002/mnfr.201000161

    Article  CAS  PubMed  Google Scholar 

  35. Zemel MB, Shi H, Greer B, Dirienzo D, Zemel PC (2000) Regulation of adiposity by dietary calcium. FASEB J 14:1132–1138

    Article  CAS  Google Scholar 

  36. Parikh SJ, Yanovski JA (2003) Calcium intake and adiposity. Am J Clin Nutr 77:281–287. https://doi.org/10.1093/ajcn/77.2.281

    Article  CAS  PubMed  Google Scholar 

  37. Vaskonen T (2003) Dietary minerals and modification of cardiovascular risk factors. J Nutr Biochem 14:492–506. https://doi.org/10.1016/s0955-2863(03)00074-3

    Article  CAS  PubMed  Google Scholar 

  38. Inoue I (2005) Lipid metabolism and magnesium. Clin Calcium 15:65–76

    PubMed  Google Scholar 

  39. Li Y, Ma AG, Sun YY, Wang QZ, Yi XM, Xu HQ (2009) Effects of vitamin E and magnesium supplementation on the metabolism of glucose and lipid in the middle-ages and older women. Mod Prev Med 11:2029–2031. 1003–8507(2009)11–2029–04.

  40. Maguire D, Talwar D, Shiels PG, McMillan D (2018) The role of thiamine dependent enzymes in obesity and obesity related chronic disease states: a systematic review. Clin Nutr ESPEN 25:8–17. https://doi.org/10.1016/j.clnesp.2018.02.007

    Article  PubMed  Google Scholar 

  41. Ansari MR, Maheshwari N, Shaikh MA, Laghari MS, Lal K, Ahmed K (2012) Correlation of serum magnesium with dyslipidemia in patients on maintenance hemodialysis. Saudi J Kidney Dis Transpl 23:21–25

    PubMed  Google Scholar 

  42. Das S, Choudhuri D (2021) Role of dietary calcium and its possible mechanism against metabolic disorders: a concise review. J Food Biochem 45:e13697. https://doi.org/10.1111/jfbc.13697

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank other participants and staff who contributed to the present study.

Funding

This study was jointly supported by the Hubei Provincial Natural Science Foundation of China (No. 2020CFB407), the Nantong Health Committee Foundation (No. QA2020031), and the 2020 Innovation and Entrepreneurship Program of Jiangsu Province (Doctor Funds of the Innovation and Entrepreneurship Program). The funders had no role in the design, analysis, or writing of this article.

Author information

Authors and Affiliations

Authors

Contributions

Nan Lu designed the research. Hongli Dong, Ping Hu, Jie Wang, and Yaju Zhang conducted research. Hongli Dong analyzed the data and wrote the paper. Nan Lu and Yaju Zhang critically revised the manuscript. Nan Lu had primary responsibility for the final content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nan Lu.

Ethics declarations

Ethics Approval

The study was approved by the Ethics Committee of Wuhan Asia Heart Hospital (2016–B008) and performed in accordance with the 1964 Declaration of Helsinki and its later amendments.

Consent to Participate

Written consents were obtained from all subjects.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Hu, P., Wang, J. et al. Associations of Serum Calcium, Magnesium Levels, and Their Ratio with Apolipoproteins in Chinese Adults with Coronary Artery Disease: a Cross-Sectional Study. Biol Trace Elem Res 200, 4221–4229 (2022). https://doi.org/10.1007/s12011-021-03015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03015-3

Keywords

Navigation