Skip to main content
Log in

Evaluation of the Effects of Nitrilotriacetic Acid as a Chelating Agent on the Biochemical Toxicity of Lead in Oreochromis niloticus

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In the present research, the effects of sublethal lead (Pb) concentrations on total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI) levels, enzyme activities (aspartate transaminase, AST; alanine transaminase, ALT; lactate dehydrogenase, LDH), ion levels (magnesium, Mg; sodium, Na; potassium, K; chlorine, Cl; calcium, Ca), and some metabolite levels (cholesterol, triglyceride, HDL, LDL, albumin, total protein) in the blood serum of Oreochromis niloticus and the protective function of nitrilotriacetic acid (NTA) due to its chelating characteristic were investigated. O. niloticus, which has an important position in the food chain and is often preferred in toxicological studies, was exposed to 0.1 ppm Pb, 0.1 ppm Pb + 0.3 ppm NTA, 1 ppm Pb, and 1 ppm Pb + 3 ppm NTA concentrations for 7 and 21 days. At the end of the duration, serum TAS and TOS levels were measured spectrophotometrically with Rel Assay Diagnostics; other enzyme activities, ion levels, and metabolite parameters were done by an autoanalyzer using commercial kits. Depending on the exposure periods and concentrations, the changes in the parameters were determined. It is determined that, under the influence of high ambient concentration of lead, TOS, OSI, AST, ALT, LDH, LDL, triglyceride, and Mg levels increased, while TAS, albumin, and K levels decreased after 21 days. These increases/decreases in all serum biochemical parameters were generally higher in fish treated with Pb alone compared to fish treated with a mixture of Pb + NTA. This study shows that these changes in serum parameters could be used as an indicator to assess on metal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gülhan MF, Akgül H, Dastan T, Durna Dastan S, Selamoglu Talas Z (2014) Effects of different concentrations of pollen extract on brain tissues of Oncorhynchus mykiss. J Coast Life Med 2(3):169–174. https://doi.org/10.12980/JCLM.2.2014JCLM-2013-0001

    Article  Google Scholar 

  2. Firidin G (2019) Effects of lead and its selenium mixtures on biochemical parameters of Oreochromis niloticus. Fresenius Environ Bull 28(1):383–390

    CAS  Google Scholar 

  3. Hu S, Su Z, Jiang J, Huang W, Liang X, Hu J, Chen M, Cai W, Wang J, Zhang X (2016) Lead, cadmium pollution of seafood and human health risk assessment in the coastline of the southern China. Stoch Env Res Risk A 30:1379–1386. https://doi.org/10.1007/s00477-015-1139-9

    Article  Google Scholar 

  4. Chen M, Ding S, Lin J, Fu Z, Tang W, Fan X, Gong M, Wang Y (2019) Seasonal changes of lead mobility in sediments in algae and macrophyte dominated zones of the lake. Sci Total Environ 660:484–492. https://doi.org/10.1016/j.scitotenv.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  5. Çoğun HY, Şahin M (2012) The effect of zeolite on reduction of lead toxicity in Nile tilapia (Oreochromis niloticus Linnaeus, 1758). Kafkas Univ Vet Fak Derg 18(1):135–140. https://doi.org/10.9775/kvfd.2011.5170

    Article  Google Scholar 

  6. James R, Sampath K, Selvamani P (1998) Effect of EDTA on reduction of copper toxicity in Oreochromis mossambicus. Bull Environ Contam Toxicol 60:487–493. https://doi.org/10.1007/s001289900651

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Klamerth N, Chelme-Ayala P, Gamal El-Din M (2017) Comparison of classical Fenton, nitrilotriacetic acid (NTA)-Fenton, UV-Fenton, UV photolysis of Fe-NTA, UV-NTA-Fenton, and UV-H2O2 for the degradation of cyclohexanoic acid. Chemosphere 175:178–185. https://doi.org/10.1016/j.chemosphere.2017.02.058

    Article  CAS  PubMed  Google Scholar 

  8. Aslan R, Kutlu R, Civi S, Tasyurek E (2014) The correlation of the total antioxidant status (TAS), total oxidant status (TOS) and paraoxonase activity (PON1) with smoking. Clinic Biochem 47:393–397. https://doi.org/10.1016/j.clinbiochem.2013.10.002

    Article  CAS  Google Scholar 

  9. Kovacik A, Tvrda E, Miskeje M, Arvay J, Tomka M, Zbynovska K, Andreji J, Hleba L, Kovacikova E, Fik M, Cupka P, Nahacky J, Massanyi P (2019) Trace metals in the freshwater fish Cyprinus carpio: effect to serum biochemistry and oxidative status markers. Biol Trace Elem Res 188:494–507. https://doi.org/10.1007/s12011-018-1415-x

    Article  CAS  PubMed  Google Scholar 

  10. Klisic A, Kavaric N, Vujcic S, Spasojevic-Kalimanovska V, Kotur-Stevuljevic J, Ninic A (2020) Total oxidant status and oxidative stress index as indicators of increased Reynolds risk score in postmenopausal women. Eur Rev Med Pharmacol Sci 24:10126–10133

    CAS  PubMed  Google Scholar 

  11. Firat Ö, Çoğun HY, Aytekin T, Gök G, Firat Ö, Kargin F, Kötemen Y (2011) A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol Biochem 37:657–666. https://doi.org/10.1007/s10695-011-9466-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Firat Ö, Şahin-Inandi A (2016) Biochemical toxicity of mercury and protective effect of zeolite on this toxicity in Oreochromis niloticus. Turk J Aquat Sci 31(2):86–95. https://doi.org/10.18864/TJAS201610

    Article  Google Scholar 

  13. Kumari K, Ranjan N, Sinha RC (2011) Multiple biomarker response in the fish, Labeo rohita due to hexavalent chromium. 2nd International Conference on Biotechnology and Food Science 7: 155–158

  14. Folmar LC (1993) Effects of chemical contaminants on blood chemistry of teleost fish: a bibliography and synopsis of selected effects. Environ Toxicol Chem 12:337–375. https://doi.org/10.1002/etc.5620120216

    Article  CAS  Google Scholar 

  15. Pelgrom SMGS, Lock RAC, Balm PHM, WendelaarBonga SE (1995) Effects of combined waterbone Cd and Cu exposures on ionic and plasma cortisol in Tilapia Oreochromis mossambicus. Comp Biochem Physiol 111C:227–235. https://doi.org/10.1016/0742-8413(95)00041-L

    Article  Google Scholar 

  16. Adham KG, Al-Eisa NA, Farhood MH (2011) Impact of heavy metal pollution on the hemogram and serum biochemistry of the Libyan jird, Meriones libycus. Chemosphere 84(2011):1408–1415. https://doi.org/10.1016/j.chemosphere.2011.04.064

    Article  CAS  PubMed  Google Scholar 

  17. Cogun HY, Firat O, Aytekin T, Gök G, Firat O, Kargin F, Kötemen Y (2012) Protective effect of selenium against mercury induced toxicity on hematological and biochemical parameters of Oreochromis niloticus. J Biochem Mol Toxicol 26(3):117–122. https://doi.org/10.1002/jbt.20417

    Article  CAS  PubMed  Google Scholar 

  18. Erel O (2004) A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 37(2):112–119

    Article  CAS  Google Scholar 

  19. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38(12):1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008

    Article  CAS  PubMed  Google Scholar 

  20. Demirpençe Ö, Sevim B, Yildirim M, AyanNurlu N, Mert D, Evliyaoğlu O (2014) Serum paraoxonase, TAS, TOS and ceruloplasmin in brucellosis. Int J Clin Exp Med 7(6):1592–1597

    PubMed  PubMed Central  Google Scholar 

  21. Patrick L (2006) Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev 11(2):114–127

    PubMed  Google Scholar 

  22. Yilmaz M, Koç E, Atakişi O, Harmankaya A, Ersan Y, Karaman M, Çitil M (2016) The protective effects of L-carnitine against lead (II) acetate toxicity in Capoeta capoeta (Guldensteadt 1773). Kafkas Univ Vet Fak Derg 22(4):511–518. https://doi.org/10.9775/kvfd.2015.14942

    Article  Google Scholar 

  23. Oğuz EF, Çalci E, Bal CD, Yilmaz OH, Tutkun E, Yilmaz FM (2016) Oxidative stress status in lead exposed workers. Turk J Occup Environ Med Saf 1(4):34–40

    Google Scholar 

  24. Kayar A, Dokuzeylul B, Kandemir FM, Kirbas A, Bayrakal A, Or ME (2015) Total oxidant and antioxidant capacities, nitric oxide and malondialdehyde levels in cats seropositive for the feline coronavirus. Veterinarni Medicina 60(5):274–281. https://doi.org/10.17221/8180-VETMED

    Article  CAS  Google Scholar 

  25. Kaya I, Yilmaz M, Koç E, Deveci HA, Ersan Y, Karapehlivan M (2014) Tebukonazol (Fungusit) uygulanan Cyprinus carpio (L. 1758)’da serum total antioksidan, oksidan ve salisilik asit düzeylerinin incelenmesi. J Fish Sci 8(3):214–219. https://doi.org/10.3153/jfscom.201427

    Article  Google Scholar 

  26. Soliman HAM, Hamed M, Lee JS, Sayed AEH (2019) Protective effects of a novel pyrazolecarboxamide derivative against lead nitrate induced oxidative stress and DNA damage in Clarias gariepinus. Environ Pollut 247:678–684. https://doi.org/10.1016/j.envpol.2019.01.074

    Article  CAS  PubMed  Google Scholar 

  27. Karataş S, Erdem C, Cicik B (2005) Effect of cadmium on levels of sera aspartate aminotransferase alanine aminotransferase and glucose Cyprinus carpio (L. 1758). Ekoloji 14(55):18–23

    Google Scholar 

  28. Akbary P, Yarahmadi SS, Jahanbakhshi A (2018) Hematological, hepatic enzymes’ activity and oxidative stress responses of gray mullet (Mugil cephalus) after sub-acute exposure to copper oxide. Environ Sci Pollut Res 25:1800–1808. https://doi.org/10.1007/s11356-017-0582-1

    Article  CAS  Google Scholar 

  29. Atli G, YuzbasiogluAriyurek S, Kanak EG, Canli M (2015) Alterations in the serum biomarkers belonging to different metabolic systems of fish (Oreochromis niloticus) after Cd and Pb exposures. Environ Toxicol Pharmacol 40:508–515. https://doi.org/10.1016/j.etap.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  30. Mirghaed AT, Yarahmadi P, Harehdasht MS, Craig PM, Farsani HG, Ghysvandi N, Eagdari S (2018) Hemato-immunological, serum metabolite and enzymatic stress response alterations in exposed rainbow trout (Oncorhynchus mykiss) to nanosilver. Int J Aquat Biol 6(4):221–234

    Google Scholar 

  31. Thomas P (1990) Molecular and biochemical responses of fish to stressors and their potential use in environmental monitoring. Am Fish Soc Symp 8:9–28

    CAS  Google Scholar 

  32. Stoskopf MK (1993) Clinical pathology in fish. Medicine Saunders Philadelphia 113–131

  33. Vinodhini R, Narayanan M (2009) The impact of toxic heavy metals on the hematological parameters in common carp (Cyprinus carpio L). Iran J Environ Health Sci Eng 6(1):23–28

    CAS  Google Scholar 

  34. Klyszejko B, Lyczywek G (1999) Effect of a sublethal concentration of deltametrin on biochemical parameters of the blood serum of carp (Cyprinus carpio L.). Acta Ichth Piscat 29:109–117

  35. Canli EG, Dogan A, Canli M (2018) Serum biomarker levels alter following nanoparticle (Al2O3, CuO, TiO2) exposures in freshwater fish (Oreochromis niloticus). Environ Toxicol Pharmacol 62:181–187. https://doi.org/10.1016/j.etap.2018.07.009

    Article  CAS  PubMed  Google Scholar 

  36. Öner M, Atlı G, Canlı M (2008) Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environ Toxicol Chem 27(2)360–366. https://doi.org/10.1897/07-281R.1

  37. Yang JL, Chen HC (2003) Effects of gallium on common carp (Cyprinus carpio): acute test, serum biochemistry, and erythrocyte morphology. Chemosphere 53:877–882. https://doi.org/10.1016/S0045-6535(03)00657

  38. Mutlu E (2016) The effects of lead-induced toxicity on metabolic biomarkers in common carp (Cyprinus carpio). Fresenius Environ Bull 25(5):1419–1427

    Google Scholar 

  39. Abdou HM, Hassan MA (2014) Protective role of omega-3 polyunsaturated fatty acid against lead acetate-induced toxicity in liver and kidney of female rats. BioMed Res Int 435857. https://doi.org/10.1155/2014/435857

  40. Shahat MMA, Fouda MMA, Sultan HAA, Ali IO (2018) Evaluation of the protective roles of synthetic zeolite on some physiological and biochemical parameters after cadmium toxicity of crayfish (Procambarus clarkii). Egypt J Hosp Med 72(11):5517–5526. https://doi.org/10.21608/EJHM.2018.11458

  41. Gopal V, Parvathy S, Balasubramanian P (1996) Effect of heavy metals on the blood protein biochemistry of the fish Cyprinus carpio and its use as a bioindicator of pollution stress. Environ Monit Assess 48:117–124

  42. Hedayati SA, Farsanib HG, Naserabadc SS, Hoseinifara SH, Doand HV  (2019) Protective effect of dietary vitamin E on immunological and biochemical induction through silver nanoparticles (AgNPs) inclusion in diet and silver salt (AgNO3) exposure on Zebrafish (Danio rerio). Comp Biochem Physiol C 222:100–107. https://doi.org/10.1016/j.cbpc.2019.04.004

  43. Banaee M, Shahafve S, Vaziriyan M, Taheri S, Haghi BN (2016) Effects of sewage effluent on blood biochemical parameters of common carp (Cyprinus carpio): a case study of Behbahan, Khuzestan Province. J Chem Health Risks 6(3):161–173. https://doi.org/10.22034/JCHR.2016.544144

  44. Mohiseni M, Asayesh SS, Bazarnoie SS, Mohseni F, Moradi N, Matouri M, Mirzaee N (2016) Biochemical alteration induced by cadmium and lead in common carp via an experimental food chain. Iran J Toxicol 10(4):25–32

  45. Latif A, Khalid M, Ali M (2014) Evaluation of toxic stress of copper sulphate and lead nitrate on hematological and serum biochemical characteristics of freshwater cyprinid (Labeo rohita). Int J Curr Eng Technol 4(1):366–372

  46. Suvetha L, Ramesh M, Saravanan M (2010) Influence of cypermethrin toxicity on ionic regulation and gill Na+/K+-ATPase activity of a freshwater teleost fish Cyprinus carpio. Environ Toxicol Pharmacol 29:44–49. https://doi.org/10.1016/j.etap.2009.09.005

  47. Kalay M (2006) The effect of cadmium on the levels of  Na+, K+, Ca++ and Mg++ in serum of Tilapia nilotica (Linnaeus, 1758). Ekoloji 15(59):1–7

  48.  Giles MA (1984) Electrolyte and water balance in plasma and urine of rainbow trout (Salmo gairdneri) during chronic exposure to cadmium. Can J Fish Aquat Sci 41:1678–1685. https://doi.org/10.1139/f84-206

Download references

Acknowledgements

I would like to thank to Prof. Dr. Ferit Kargin, Prof. Dr. Hikmet Y. Çoğun, and Prof. Dr. Özgür Firat. I also would like to thank to Dr. Selçuk Matyar and Ahmet Aytekin for their help.

Funding

This study was supported by Grant FBA-2018–10696 from Cukurova University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tüzün Aytekin.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aytekin, T. Evaluation of the Effects of Nitrilotriacetic Acid as a Chelating Agent on the Biochemical Toxicity of Lead in Oreochromis niloticus. Biol Trace Elem Res 200, 2908–2914 (2022). https://doi.org/10.1007/s12011-021-02973-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02973-y

Keywords

Navigation