Skip to main content

Advertisement

Log in

Analysis of Threshold Effect of Urinary Heavy Metal Elements on the High Prevalence of Nephrolithiasis in Men

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Exposure to heavy metals in the environment exerts serious effects on kidney health. However, the effects of joint exposure on the kidneys have been rarely studied, particularly in non-occupational exposure high-risk populations. This study provided a reference threshold range of heavy metals in urine and explored the effect of joint exposure on nephrolithiasis in men. The data were obtained from the China Multi-Ethnic Cohort database, and 1502 men were included in the study. A two-piece-wise regression model was used to assess the dose–response relationship between heavy metal exposure and nephrolithiasis. The least absolute shrinkage and selection operator regression model was used to calculate the score of joint exposure to heavy metals. The threshold effect analysis revealed a linear relationship between the concentration of arsenic (As) in the urine and the prevalence of nephrolithiasis, whereas a nonlinear relationship was observed with cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb). In addition, As, Cd, Cr, Hg, and Pb may significantly affect the joint exposure effect. Moreover, the final risk of nephrolithiasis increased by 123% (P for trend < 0.001). This study found a threshold relationship between heavy metals (Cd, Cr, Hg, Pb) in male urine and the occurrence of nephrolithiasis. Joint exposure to heavy metals in urine caused a high-risk effect on nephrolithiasis. The study provided a reference threshold value of related studies and indicated that environmental pollution caused by heavy metals should be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Ali H, Khan E (2018) What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’—proposal of a comprehensive definition. Toxicol Environ Chem 100:6–19. https://doi.org/10.1080/02772248.2017.1413652

    Article  CAS  Google Scholar 

  2. Mishra S, Bharagava RN, More N, Yadav, Zainith S, Mani S, Chowdhary P (2019) Heavy metal contamination: an alarming threat to environment and human health. Environmental biotechnology: for sustainable future 103:125. https://doi.org/10.1007/978-981-10-7284-0_5

    Article  Google Scholar 

  3. Rahman Z, Singh VP (2019) The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb) on the total environment: an overview. Environ Monit Assess 191:419. https://doi.org/10.1007/s10661-019-7528-7

    Article  CAS  PubMed  Google Scholar 

  4. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology 133:164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  5. Gunawardena SA, Gunawardana JW, Chandrajith R, Thoradeniya T, Jayasinghe S (2020) Renal bioaccumulation of trace elements in urban and rural Sri Lankan populations: a preliminary study based on post mortem tissue analysis. J Trace Elem Med Biol 61:126565. https://doi.org/10.1016/j.jtemb.2020.126565

    Article  CAS  PubMed  Google Scholar 

  6. Cabral M, Garçon G, Touré A, Bah F, Dewaele D, Bouhsina S, Cazier F, Faye A, Fall M, Courcot D, Verdin A (2021) Renal impairment assessment on adults living nearby a landfill: early kidney dysfunction biomarkers linked to the environmental exposure to heavy metals. Toxicol Rep 8:386–394. https://doi.org/10.1016/j.toxrep.2021.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Joint W, World Health Organization (2007) Health risks of heavy metals from long-range transboundary air pollution. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  8. Rana MN, Tangpong J, Rahman MM (2018) Toxicodynamics of lead, cadmium, mercury and arsenic-induced kidney toxicity and treatment strategy: a mini review. Toxicol Rep 5:704–713. https://doi.org/10.1016/j.toxrep.2018.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yokohira M, Arnold LL, Pennington KL, Suzuki S, Kakiuchi-kiyota S, Herbin-Davis K, Thomas DJ, Cohen SM (2011) Effect of sodium arsenite dose administered in the drinking water on the urinary bladder epithelium of female arsenic (+ 3 oxidation state) methyltransferase knockout mice. Toxicol Sci 121(2):257–266. https://doi.org/10.1093/toxsci/kfr051

    Article  CAS  PubMed  Google Scholar 

  10. Johri N, Jacquillet G, Unwin R (2010) Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 23(5):783–792. https://doi.org/10.1007/s10534-010-9328-y

    Article  CAS  PubMed  Google Scholar 

  11. Al-Rikabi ZGK, Al-Saffar MA, Abbas AH (2021) The accumulative effect of heavy metals on liver and kidney functions. Medico Legal Update 21(1):1114–1119

    Google Scholar 

  12. Kim HS, Kim YJ, Seo YR (2015) An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. J Cancer Prev 20:4–232. https://doi.org/10.15430/JCP.2015.20.4.232

    Article  Google Scholar 

  13. Zalups RK, Joshee L, Bridges CC (2014) Novel hg2+-induced nephropathy in rats and mice lacking mrp2: evidence of axial heterogeneity in the handling of hg2+ along the proximal tubule. Toxicol Sci 142(1):250–260. https://doi.org/10.1093/toxsci/kfu171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Missoun F, Slimani M, Aoues A (2010) Toxic effect of lead on kidney function in rat Wistar. Afr J Biochem Res 4(2):021–027

    CAS  Google Scholar 

  15. Liu G, Wang ZK, Wang ZY, Yang DB, Liu ZP, Wang L (2016) Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol 90(5):1193–1209. https://doi.org/10.1007/s00204-015-1547-0

    Article  CAS  PubMed  Google Scholar 

  16. Scammell MK, Sennett CM, Petropoulos ZE, Kamal JK, Kaufman JS (2019) Environmental and occupational exposures in kidney disease. Seminars in nephrology WB Saunders 39(3):230–243. https://doi.org/10.1016/j.semnephrol.2019.02.001

    Article  CAS  Google Scholar 

  17. Assadi F, Moghtaderi M (2017) Preventive kidney stones: continue medical education. Int J Prev Med 8:67. https://doi.org/10.4103/ijpvm.IJPVM_17_17

    Article  PubMed  PubMed Central  Google Scholar 

  18. National Center for Health Statistics (US), Council on Clinical Classifications (1980) The International classification of diseases, 9th revision, clinical modification: ICD-9-CM. Public Health Service, Health, US Department of Health and Human Services

    Google Scholar 

  19. Lin H, Zhu X, Long J, Chen Y, Xie Y, Liao M, Chen J, Tian J, Huang S, Tang R, Xian X, Wei S, Wang Q, Mo Z (2018) HIPK2 polymorphisms rs2058265, rs6464214, and rs7456421 were associated with kidney stone disease in Chinese males not females. Gene 653:51–56. https://doi.org/10.1016/j.gene.2018.02.020

    Article  CAS  PubMed  Google Scholar 

  20. Peerapen P, Thongboonkerd V (2019) Protective cellular mechanism of estrogen against kidney stone formation: a proteomics approach and functional validation. Proteomics 19(19):1900095. https://doi.org/10.1002/pmic.201900095

    Article  CAS  Google Scholar 

  21. Post TW, Rose BD (2006) Urinalysis in the diagnosis of renal disease. Up To Date 13(3).

  22. Wang YX, Feng W, Zeng Q, Sun Y, Wang P, You L, Yang P, Huang Z, Yu SL, Lu WQ (2016) Variability of metal levels in spot, first morning, and 24-hour urine samples over a 3-month period in healthy adult Chinese men. Environ Health Perspec 124(4):468–476. https://doi.org/10.1289/ehp.1409551

    Article  CAS  Google Scholar 

  23. Côté AM, Firoz T, Mattman A, Lam EM, von Dadelszen P, Magee LA (2008) The 24-hour urine collection: gold standard or historical practice? Am J Obstet Gynecol 199(6):625. e1-625. e6. https://doi.org/10.1016/j.ajog.2008.06.009

    Article  Google Scholar 

  24. Xie KP, Tian Z, Wu TH, LI Z, Zhao YG, Shi XY (2010) Co-precipitation-flame atomic absorption spectrophotometric determination of lead, cadmium and manganese in urine. Chin J Health Lab Tech 20(9):2154–2155

    Google Scholar 

  25. Michalek IM, Martinsen JI, Weiderpass E, Hansen J, Sparen P, Tryggvadottir L, Pukkala E (2019) Heavy metals, welding fumes, and other occupational exposures, and the risk of kidney cancer: a population-based nested case-control study in three Nordic countries. Environl Res 173:117–123. https://doi.org/10.1016/j.envres.2019.03.023

    Article  CAS  Google Scholar 

  26. Jordanova M, Rebok K, Dragun Z, Ramani S, Ivanova L, Kostov V, Valić D, Krasnići N, Marijić VF, Kapetanović D (2017) Effects of heavy metal pollution on pigmented macrophages in kidney of V ardar chub (S qualius vardarensis K araman). Microsc Res Tech 80(8):930–935. https://doi.org/10.1002/jemt.22884

    Article  CAS  PubMed  Google Scholar 

  27. Bot YS, Nwanjo HU, Nwosu DC, Olumide OB, Ifenkwe JC (2020) Derangement of kidney biomarkers associated with blood cadmium, lead and chromium in artisans and petrol hawkers in Jos. Nigeria Inter J Nephrol Kidney Fail 6(1):1–6

    Google Scholar 

  28. Sun Y, Zhou Q, Zheng J (2019) Nephrotoxic metals of cadmium, lead, mercury and arsenic and the odds of kidney stones in adults: An exposure-response analysis of NHANES 2007–2016. Environ Int 132:105115. https://doi.org/10.1016/j.envint.2019.105115

    Article  CAS  PubMed  Google Scholar 

  29. Ferraro PM, Gambaro G, Curhan GC, Taylor EN (2018) Intake of trace metals and the risk of incident kidney stones. J Urol 199(6):1534–1539. https://doi.org/10.1016/j.juro.2018.01.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo J, Hendryx M (2020) Metal mixtures and kidney function: an application of machine learning to NHANES data. Environ Res 191:110126. https://doi.org/10.1016/j.envres.2020.110126

    Article  CAS  PubMed  Google Scholar 

  31. World Health Organization (2015) Human biomonitoring: facts and figures. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  32. Jain RB (2019) Co-exposures to toxic metals cadmium, lead, and mercury and their impact on unhealthy kidney function. Environ Sci Pollut Res 26(29):30112–30118. https://doi.org/10.1007/s11356-019-06182-y

    Article  CAS  Google Scholar 

  33. Lee MY, Kim YJ, Hwang DG, Kang YY, Shin SK, Jeon TW (2021) Potential risk of exposure to heavy metals from co-processing of secondary wastes in the Republic of Korea. J Environ Manag 286:112164. https://doi.org/10.1016/j.jenvman.2021.112164

    Article  CAS  Google Scholar 

  34. Zhao X, Hong F, Yin J, Tang W, Zhang G, Liang X, Li J, Cui C, Li X (2020) Cohort profile: the China Multi-Ethnic cohort (CMEC) study. J. Epidemiol, Int. https://doi.org/10.1093/ije/dyaa185

    Book  Google Scholar 

  35. Stockman JA (2011) A new equation to estimate glomerular filtration rate. Yearb Pediatr 2011:193–194. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  Google Scholar 

  36. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek JW, Manzi J, Lente FV, Zhang YL, Coresh J, Levey AS (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367(1):20. https://doi.org/10.1056/NEJMoa1114248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moore RE, Rehkämper M, Strekopytov KK, S, Larner F, (2018) Determination of major and trace element variability in healthy human urine by ICP-QMS and specific gravity normalisation. RSC Adv 8(66):38022–38035. https://doi.org/10.1039/C8RA06794E

    Article  Google Scholar 

  38. Wu J, Yang Z, Wei J, Zeng C, Wang Y, Yang T (2020) Association between serum magnesium and the prevalence of kidney stones: a cross-sectional study. Biol Trace Elem Res 195:20–26. https://doi.org/10.1007/s12011-019-01830-3

    Article  CAS  PubMed  Google Scholar 

  39. Zhang X, Yao ZQ, Karuna T, He XY, Wang XM, Li XF, Liu WC, Li R, Guo SQ, Chen YC, Li GC, Duan CZ (2018) The role of wall shear stress in the parent artery as an independent variable in the formation status of anterior communicating artery aneurysms. Eur Radiol 29(2):689–698. https://doi.org/10.1007/s00330-018-5624-7

    Article  CAS  PubMed  Google Scholar 

  40. Lin L, Chen CZ, Yu XD (2013) The analysis of threshold effect using Empower Stats software. Chin J Epidemiol 34(11):1139–1141. https://doi.org/10.3760/cma.j.issn.0254-6450.2013.011.021

    Article  Google Scholar 

  41. Hara A, Yang WY, PetitT ZZY, Gu YM, Wei FF, Jacobs L, Odiliab AN, Thijs L, Nawrot TS, Staessen JA (2016) Incidence of nephrolithiasis in relation to environmental exposure to lead and cadmium in a population study. Environ Res 145:1–8. https://doi.org/10.1016/j.envres.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  42. Kosiba AA, Wang Y, Chen D, Wong CKC, Gu J, Shi H (2020) The roles of calcium-sensing receptor (CaSR) in heavy metals-induced nephrotoxicity. Life Sci 242:117183. https://doi.org/10.1016/j.lfs.2019.117183

    Article  CAS  PubMed  Google Scholar 

  43. Barnett LMA, Cummings BS (2018) Nephrotoxicity and renal pathophysiology: a contemporary perspective. Toxicol Sci 164:379–390. https://doi.org/10.1093/toxsci/kfy159

    Article  CAS  PubMed  Google Scholar 

  44. Lin YJ, Hsiao JL, Hsu HT (2020) Integration of biomonitoring data and reverse dosimetry modeling to assess population risks of arsenic-induced chronic kidney disease and urinary cancer. Ecotoxicol Environ Saf 206:111212. https://doi.org/10.1016/j.ecoenv.2020.111212

    Article  CAS  PubMed  Google Scholar 

  45. Fu S, Wu J, Li Y, Liu Y, Gao Y, Yao F, Qiu C, Song L, Wu Y, Liao Y, Sun D (2014) Urinary arsenic metabolism in a Western Chinese population exposed to high-dose inorganic arsenic in drinking water: influence of ethnicity and genetic polymorphisms. Toxicol Appl Pharmacol 274(1):117–123. https://doi.org/10.1016/j.taap.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  46. Kolbach-Mandel AM, Mandel NS, Hoffmann BR, Kleinman JG, Wesson JA (2017) Stone former urine proteome demonstrates a cationic shift in protein distribution compared to normal. Urolithiasis 45:337–346. https://doi.org/10.1007/s00240-017-0969-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Burbure C, Buchet JP, Leroyer A, Nisse C, Haguenoer JM, Mutti A, Smerhovský Z, Cikrt M, Trzcinka-Ochocka M, Razniewska G, Jakubowski M, Bernard A (2006) Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: evidence of early effects and multiple interactions at environmental exposure levels. Environ Health Perspect 114(4):584–590. https://doi.org/10.1289/ehp.820

    Article  PubMed  Google Scholar 

  48. Idrees N, Tabassum B, Abd Allah EF, Hashem A, Sarah R, Hashim M (2018) Groundwater contamination with cadmium concentrations in some West U.P. Regions. India Saudi J Biol Sci 25:1365–1368. https://doi.org/10.1016/j.sjbs.2018.07.005

    Article  CAS  PubMed  Google Scholar 

  49. Jin Y, Lu Y, Li Y, Zhao H, Wang X, Shen Y, Kuang X (2020) Correlation between environmental low-dose cadmium exposure and early kidney damage: a comparative study in an industrial zone vs. a living quarter in Shanghai, China. Environ Toxicol Pharmacol 79:103381. https://doi.org/10.1016/j.etap.2020.103381

    Article  CAS  PubMed  Google Scholar 

  50. Satarug S, Boonprasert K, Gobe GC (2019) Chronic exposure to cadmium is associated with a marked reduction in glomerular filtration rate. Clin Kidney J 12(4):468–475. https://doi.org/10.1093/ckj/sfy113

    Article  CAS  PubMed  Google Scholar 

  51. Orr SE, Bridges CC (2017) Chronic kidney disease and exposure to nephrotoxic metals. Int J Mol Sci 18(5):1039. https://doi.org/10.3390/ijms18051039

    Article  CAS  PubMed Central  Google Scholar 

  52. Wang Y, Tang Y, Li Z, Hua Q, Wang L, Song X, Zou B, Ding M, Zhao J, Tang C (2020) Joint toxicity of a multi-heavy metal mixture and chemoprevention in Sprague Dawley rats. Int J Environ Res Public Health 17(4):1451. https://doi.org/10.3390/ijerph17041451

    Article  CAS  PubMed Central  Google Scholar 

  53. Edition F (2011) Guidelines for drinking-water quality. WHO Chron 38:104–108

    Google Scholar 

  54. Zhao M, Xu J, Li A, Mei Y, Ge X, Liu X, Wei L, Xu Q (2020) Multiple exposure pathways and urinary chromium in residents exposed to chromium. Environ Int 141:105753. https://doi.org/10.1016/j.envint.2020.105753

    Article  CAS  PubMed  Google Scholar 

  55. Tinkov AA, Skalnaya MG, Ajsuvakova OP, Serebryansky EP, Chao JC, Aschner M, Skalny AV (2021) Selenium, zinc, chromium, and vanadium levels in serum, hair, and urine samples of obese adults assessed by inductively coupled plasma mass spectrometry. Biol Trace Elem Res 199:490–499. https://doi.org/10.1007/s12011-020-02177-w

    Article  PubMed  Google Scholar 

  56. Tsai TL, Kuo CC, Pan WH, Chung YT, Chen CY, Wu TN, Wang SL (2017) The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium. Kidney Int 92:710–720. https://doi.org/10.1016/j.kint.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  57. Wang Y, Tang Y, Li Z, Hua Q, Wang L, Song X, Tang C (2020) Joint toxicity of a multi-heavy metal mixture and chemoprevention in sprague dawley rats. Int J Environ Res Public Health 17(4):1451. https://doi.org/10.3390/ijerph17041451

    Article  CAS  PubMed Central  Google Scholar 

  58. Adu-Poku B, Asiedu N, Akoto O, Ataki J (2019) Modelling the distribution of arsenic and mercury in urine using chemometric tools. Cogent Chemistry 5:1. https://doi.org/10.1080/23312009.2019.1586064

    Article  CAS  Google Scholar 

  59. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abdel-Zaher AO, Abd-Ellatief RB, Aboulhagag BA, Farghaly HSM, Al-Wasei FMM (2019) The interrelationship between gasotransmitters and lead-induced renal toxicity in rats. Toxicol Lett 310:39–50. https://doi.org/10.1016/j.toxlet.2019.04.012

    Article  CAS  PubMed  Google Scholar 

  61. Wang L, Chen M, He P, Yu H, Block KA, Xie Z (2019) Composition and spatial distribution of elements and isotopes of a giant human bladder stone and environmental implications. Sci Total Environ 650:835–846. https://doi.org/10.1016/j.scitotenv.2018.09.028

    Article  CAS  PubMed  Google Scholar 

  62. Cobbina SJ, Chen Y, Zhou Z, Wu X, Feng W, Wang W, Mao G, Xu H, Zhang Z, Wu X, Yang L (2015) Low concentration toxic metal mixture interactions: Effects on essential and non-essential metals in brain, liver, and kidneys of mice on sub-chronic exposure. Chemosphere 132:79–86. https://doi.org/10.1016/j.chemosphere.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  63. Liu J, Liu Y, Habeebu SM, Waalkes MP, Klaassen CD (2000) Chronic combined exposure to cadmium and arsenic exacerbates nephrotoxicity, particularly in metallothionein-I/II null mice. Toxicology 147(3):157–166. https://doi.org/10.1016/S0300-483X(00)00194-3

    Article  CAS  PubMed  Google Scholar 

  64. Ramesh G, Madhuri D, Lakshman M, Reddy AG (2019) Histopathological and ultrastructural changes of liver and kidney induced by lead and cadmium alone and combined exposure in male wistar rat. The Pharma Innov J 8(2):407

    CAS  Google Scholar 

  65. Liu Y, Yuan Y, Xiao Y, Li Y, Yu Y, Mo T, Jiang H, Li X, Yang H, Xu C, He M, Guo H, Pan A, Wu T (2020) Associations of plasma metal concentrations with the decline in kidney function: a longitudinal study of Chinese adults. Ecotoxicol Environ Saf 189:110006. https://doi.org/10.1016/j.ecoenv.2019.110006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Second Affiliated Hospital of Guizhou Medical University, University Town Hospital of Gui’an New District, Guizhou Province, and the Guiyang Center for Disease Control and Prevention.

Funding

This study was supported by the National Key R&D Program of China (NO.2017YFC0907301), the Science and Technology Support Plan of Science and Technology Department of Guizhou Province ([2018] No.5403), Guizhou Province Graduate Research Fund Project, Qianjiaohe YJSCXJH [2019] 076, and First-Class Discipline Construction Project in Guizhou Province-Public Health and Preventive Medicine (No. 2017[85]).

Author information

Authors and Affiliations

Authors

Contributions

YL prepared the data, conducted the analysis, and drafted and revised the manuscript. CZ and QY conducted the experiments. ZQ, JL, XT, and QW provided technical support and contributed to the project. FH monitored all aspects of research implementation and contributed to the writing of the manuscript. All authors approved the final version.

Corresponding author

Correspondence to Feng Hong.

Ethics declarations

Ethics Approval

This study was approved by the Sichuan University Medical Ethical Review Board (K2016038) and the Medical Ethics Committee of the Affiliated Hospital of Guizhou Medical University (2018[094]).

Consent to Participate

All participants provided the written informed consent for the current study.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(Docx 68.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, C., Qin, Z. et al. Analysis of Threshold Effect of Urinary Heavy Metal Elements on the High Prevalence of Nephrolithiasis in Men. Biol Trace Elem Res 200, 1078–1088 (2022). https://doi.org/10.1007/s12011-021-02740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02740-z

Keywords

Navigation