Skip to main content

Advertisement

Log in

Relationship Between Gymnastic Rhythmic Practice and Body Composition, Physical Performance, and Trace Element Status in Young Girls

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 20 March 2021

This article has been updated

Abstract

This study evaluates the influence on body development of doing rhythmic gymnastics in girls from 10 to 17 years of age, the results of certain strength and flexibility abilities, and the trace element status (Ca, Fe, Zn, Cu, Mn, Cr, and Ni). The subjects were divided into three groups: (a) girls who practiced rhythmic gymnastics at a competition level (competition group); (b) girls who practiced this sport at a non-competitive level (training group); and (c) girls who do not practice any sport and with a low level of physical activity (control or sedentary group). Trace element status was determined in hair and urine samples. Results showed that doing rhythmic gymnastics does not alter the normal physical development of muscle mass, and even leads to a decrease in body fat content. Furthermore, better scores in the strength and flexibility test were obtained by the participants of this sports discipline. Statistically significant differences in urine Fe, Cu, and Mn values (p < 0.05) and in hair Cr, Cu, and Mn values (p < 0.05) were found between the two rhythmic gymnastics groups and the control group, and were higher in the competition and training groups. A principal component analysis model was performed to evaluate the possibility of cluster formation among the girls. The PCA results revealed a separation between the different groups although the separation was not perfect. PLS-DA was attempted in order to verify whether it was possible to discriminate between the groups included in this study. It was clear that the competition and control ones were very well classified (around 95% of correct predictions) but 20% of the girls belonging to the training group were misclassified as belonging to the competition one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Strong WB, Malina RM, Blimkie CJR et al (2005) Evidence based physical activity for school-age youth. J Pediatr 146(6):732–737. https://doi.org/10.1016/j.jpeds.2005.01.055

    Article  PubMed  Google Scholar 

  2. Jáuregui A, Villalpando S, Rangel-Baltazar E, Lara-Zamudio YA, Castillo-García MM (2012) Physical activity and fat mass gain in Mexican school-age children: a cohort study. BMC Pediatr 12. https://doi.org/10.1186/1471-2431-12-109

  3. Bielemann RM, Martinez-Mesa J, Gigante DP (2013) Physical activity during life course and bone mass: a systematic review of methods and findings from cohort studies with young adults. BMC Musculoskelet Disord 14(1):1. https://doi.org/10.1186/1471-2474-14-77

    Article  Google Scholar 

  4. Alves JGB, Bezerra JG, Alves GV (2019) Effects of physical activity on children’s growth. J Pediatr 95(Suppl. 1):S72–S78. https://doi.org/10.1016/j.jped.2018.11.003

    Article  Google Scholar 

  5. Pérez Muñoz S, Domínguez Muñoz R, Sánchez Muñoz A, Cayetano AR (2015) Beneficios y riesgos asociados en la actividad física para la salud Benefits and risks on physical activity for health. Efdeportes Rev Digit 208

  6. Soria M, González-Haro C, Ansón M, López-Colón JL, Escanero JF (2015) Plasma levels of trace elements and exercise induced stress hormones in well-trained athletes. J Trace Elem Med Biol 31:113–119. https://doi.org/10.1016/j.jtemb.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  7. Zaitseva IP, Skalny AA, Tinkov AA, Berezkina ES, Grabeklis AR, Skalny AV (2015) The influence of physical activity on hair toxic and essential trace element content in male and female students. Biol Trace Elem Res 163(1-2):58–66. https://doi.org/10.1007/s12011-014-0172-8

    Article  CAS  PubMed  Google Scholar 

  8. Nabatov AA, Troegubova NA, Gilmutdinov RR, Sereda AP, Samoilov AS, Rylova NV (2017) Sport- and sample-specific features of trace elements in adolescent female field hockey players and fencers. J Trace Elem Med Biol 43:33–37. https://doi.org/10.1016/j.jtemb.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  9. Heffernan SM, Horner K, De Vito G, Conway GE (2019) The role of mineral and trace element supplementation in exercise and athletic performance: a systematic review. Nutrients 11(3). https://doi.org/10.3390/nu11030696

  10. Santulli G, Marks A (2015) Essential roles of intracellular calcium release channels in muscle, brain, metabolism, and aging. Curr Mol Pharmacol 8(2):206–222. https://doi.org/10.2174/1874467208666150507105105

    Article  CAS  PubMed  Google Scholar 

  11. Ge J, Iragavarapu AG, Nesmelov YE (2018) Role of myosin CaATPase in muscle contraction. Biophys J 114(3):646a

    Article  Google Scholar 

  12. Williams MH (2005) Dietary supplements and sports performance: minerals. J Int Soc Sports Nutr 2(1):43. https://doi.org/10.1186/1550-2783-2-1-43

    Article  PubMed  PubMed Central  Google Scholar 

  13. Latorre M, Troncoso M, Uauy R (2019) Biological aspects of copper. In Clinical and translational perspectives on Wilson disease. Academic Press, pp 25–31. https://doi.org/10.1016/B978-0-12-810532-0.00004-5

  14. Dressendorfer RH, Petersen SR, Moss Lovshin SE, Keen CL (2002) Mineral metabolism in male cyclists during high-intensity endurance training. Int J Sport Nutr 12(1):63–72. https://doi.org/10.1123/ijsnem.12.1.63

    Article  CAS  Google Scholar 

  15. Yusni, Amiruddin, Purba A, Tarigan B (2017) Essential role of serum calcium for muscle strength in football athletes. IOP Conf Ser Mater Sci Eng 180(1). https://doi.org/10.1088/1757-899X/180/1/012186

  16. Cepeda-Lopez AC, Aeberli I, Zimmermann MB (2010) Does obesity increase risk for iron deficiency? A review of the literature and the potential mechanisms. Int J Vitam Nutr Res 80(4-5):263–270. https://doi.org/10.1024/0300-9831/a000033

    Article  CAS  PubMed  Google Scholar 

  17. Soliman A, De Sanctis V, Kalra S (2014) Anemia and growth. Indian J Endocrinol Metab 18(7):S1–S5. https://doi.org/10.4103/2230-8210.145038

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nazem MR, Hedayati M, Asadi M, Emami A (2016) Mutual interaction between obesity and zinc deficiency. Jacobs J Obes

  19. Fan Y, Zhang C, Bu J (2017) Relationship between selected serum metallic elements and obesity in children and adolescent in the U.S. Nutrients 9(2):1–12. https://doi.org/10.3390/nu9020104

    Article  CAS  Google Scholar 

  20. Clarkson PM (1997) Effects of exercise on chromium levels. Is supplementation required? Sports Med 23(6):341–349. https://doi.org/10.2165/00007256-199723060-00001

    Article  CAS  PubMed  Google Scholar 

  21. Speich M, Pineau A, Ballereau F (2001) Minerals, trace elements and related biological variables in athletes and during physical activity. Clin Chim Acta 312(1-2):1–11. https://doi.org/10.1016/S0009-8981(01)00598-8

    Article  CAS  PubMed  Google Scholar 

  22. Milne DB (2000) Laboratory assessment of trace element and mineral status. In: Bodgen JD, Klevay LM (eds) Clinical nutrition of the essential trace elements and minerals. Springer Seience+Business Media, New York

    Google Scholar 

  23. Mataix-Verdú J, Llopis-González J (2015) Minerales. Nutrición y alimentación humana (second ed.). Madrid (Spain): Ergón265?301

  24. Zhou T, Li Z, Zhang F, Jiang X, Shi W, Wu L, Christie P (2016) Concentrations of arsenic, cadmium and lead in human hair and typical foods in eleven Chinese cities. Environ Toxicol Pharmacol 48:150–156. https://doi.org/10.1016/j.etap.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  25. dos Santos M, Flores Soares MC, Martins Baisch PR, Muccillo Baisch AL, Rodrigues da Silva FM Jr (2018) Biomonitoring of trace elements in urine samples of children from a coal-mining region. Chemosphere 197:622–626. https://doi.org/10.1016/j.chemosphere.2018.01.082

    Article  CAS  PubMed  Google Scholar 

  26. Godebo TR, Paul CJ, Jeuland MA, Tekle-Haimanot R (2019) Biomonitoring of metals and trace elements in urine of central Ethiopian populations. Int J Hyg Environ Health 222(3):410–418. https://doi.org/10.1016/j.ijheh.2018.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jablan J, Inić S, Stosnach H, Hadžiabdić MO, Vujić L, Domijan AM (2017) Level of minerals and trace elements in the urine of the participants of mountain ultra-marathon race. J Trace Elem Med Biol 41:54–59. https://doi.org/10.1016/j.jtemb.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  28. Law MP, Côté J, Ericsson KA (2007) Characteristics of expert development in rhythmic gymnastics: a retrospective study. Int J Sport Exerc Psychol 5(1):82–103. https://doi.org/10.1080/1612197x.2008.9671814

    Article  Google Scholar 

  29. Marfell-Jones M, Olds T, Norton K, Carter L (2011) International standards for anthropometric assessment. Int Soc Adv Kinanthropometry

  30. Varela-Moreiras G, Ruiz E, Valero T, Ávila JM, del Pozo S (2013) La dieta Española: Una actualzación. Nutr Hosp 28(SUPPL.5):13–20. https://doi.org/10.3305/nh.2013.28.sup5.6914

    Article  PubMed  Google Scholar 

  31. FESNAD (2010) Ingestas Dietéticas de Referencia (IDR) para la Población Española. Rev Esp Nutr Hum Diet. https://doi.org/10.1016/S1138-0322(10)70039-0

  32. Llobet AC (1998) Gimnasia Rítmica Deportiva: teoría y práctica. Paidotribo, Barcelona

    Google Scholar 

  33. López E (2002) Pruebas de aptitud física. Barcelona, Editorial Paidotribo

    Google Scholar 

  34. Ramírez-Ojeda A, Moreno-Rojas R, Cámara-Martos F (2018) Mineral and trace element content in legumes (lentils, chickpeas and beans): bioaccesibility and probabilistic assessment of the dietary intake. J Food Comp Anal Vol 73:17–28. https://doi.org/10.1016/j.jfca.2018.07.007

    Article  CAS  Google Scholar 

  35. Páscoa RNMJ, Lopo M, dos Santos CT, Graça A, Lopes J (2016) Exploratory study on vineyards soil mapping by visible/near-infrared spectroscopy of grapevine leaves. Comput Electron Agric 27:15–25. https://doi.org/10.1016/j.compag.2016.05.014

    Article  Google Scholar 

  36. Maïmoun L, Coste O, Georgopoulos NA, Roupas ND, Mahadea KK, Tsouka A, Mura T, Philibert P, Gaspari L, Mariano-Goulart D, Leglise M, Sultan C (2013) Despite a high prevalence of menstrual disorders, bone health is improved at a weight-bearing bone site in world-class female rhythmic gymnasts. J Clin Endocrinol Metab 98(12):4961–4969. https://doi.org/10.1210/jc.2013-2794

    Article  CAS  PubMed  Google Scholar 

  37. Theintz GE, Howald H, Allemann Y, Sizonenko PC (1989) Growth and pubertal development of young female gymnasts and swimmers: a correlation with parental data. Int J Sports Med 10(02):87–91. https://doi.org/10.1055/s-2007-1024880

    Article  CAS  PubMed  Google Scholar 

  38. Georgopoulos N, Markou K, Theodoropoulou A, Paraskevopoulou P, Varaki L, Kazantzi Z, Leglise M, Vagenakis AG (1999) Growth and pubertal development in elite female rhythmic gymnasts. J Clin Endocrinol Metab 84(12):4525–4530. https://doi.org/10.1210/jcem.84.12.6177

    Article  CAS  PubMed  Google Scholar 

  39. Georgopoulos NA, Markou KB, Theodoropoulou A, Benardot D, Leglise M, Vagenakis AG (2002) Growth retardation in artistic compared with rhythmic elite female gymnasts. J Clin Endocrinol Metab 87(7):3169–3173. https://doi.org/10.1210/jcem.87.7.8640

    Article  CAS  PubMed  Google Scholar 

  40. Klentrou P, Plyley M (2003) Onset of puberty, menstrual frequency, and body fat in elite rhythmic gymnasts compared with normal controls. Br J Sports Med 37(6):490–494. https://doi.org/10.1136/bjsm.37.6.490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsushita S, Hashizume M, Kisara K et al (2019) Time-of-day of energy intake is associated with body fat percentage in Japanese female university rhythmic gymnasts and non-athlete students. J Nutr Sci Vitaminol (Tokyo) 65(3):233–241. https://doi.org/10.3177/jnsv.65.233

    Article  CAS  Google Scholar 

  42. Łagowska K (2018) The relationship between vitamin D status and the menstrual cycle in young women: a preliminary study. Nutrients 10(11). https://doi.org/10.3390/nu10111729

  43. Nichols JF, Rauh MJ, Lawson MJ, Ji M, Barkai HS (2006) Prevalence of the female athlete triad syndrome among high school athletes. Arch Pediatr Adolesc Med 160(2):137–142. https://doi.org/10.1001/archpedi.160.2.137

    Article  PubMed  Google Scholar 

  44. Richard N, Palmer C, Adams HP (2018) Female athlete triad: low energy availability, menstrual dysfunction, altered bone mineral density. Phys Assist Clin 3(3):313–324. https://doi.org/10.1016/j.cpha.2018.02.001

    Article  Google Scholar 

  45. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP (2007) The female athlete triad. Med Sci Sports Exerc 39(10):1867–1882. https://doi.org/10.1249/mss.0b013e318149f111

    Article  PubMed  Google Scholar 

  46. Parm AL, Saar M, Pärna K, Jürimäe J, Maasalu K, Neissaar I, Jürimäe T (2011) Relationships between anthropometric, body composition and bone mineral parameters in 7-8-year-old rhythmic gymnasts compared with controls. Coll Antropol 35(3):739–745

    PubMed  Google Scholar 

  47. Võsoberg K, Tillmann V, Tamm AL, Maasalu K, Jürimäe J (2017) Bone mineralization in rhythmic gymnasts entering puberty: associations with jumping performance and body composition variables. J Sports Sci Med 16(1):99–104

    PubMed  PubMed Central  Google Scholar 

  48. Izquierdo M, Ibáñez J (2017) Crecimiento y maduración del deportista joven. Aplicación para el desarrollo de la fuerza, Revista de educación física. Renovar Teor Pract 145:47–47

    Google Scholar 

  49. Douda H, Avloniti A, Kasabalis A, Tokmakidis SP (2007) Adaptations on physical performance characteristics after a 6-month specific training in rhythmic gymnasts. Med Probl Perform Art 22(1):10–17. https://doi.org/10.1123/ijspp.3.1.41

    Article  Google Scholar 

  50. Douda HT, Toubekis AG, Avloniti AA, Tokmakidis SP (2008) Physiological and anthropometric determinants of rhythmic gymnastics performance. Int J Sports Physiol Perform 1:41–54. https://doi.org/10.1123/ijspp.3.1.41

    Article  Google Scholar 

  51. Guo CH, Chen PC, Yeh MS, Hsiung DY, Wang CL (2011) Cu/Zn ratios are associated with nutritional status, oxidative stress, inflammation, and immune abnormalities in patients on peritoneal dialysis. Clin Biochem 44(4):275–280. https://doi.org/10.1016/j.clinbiochem.2010.12.017

    Article  CAS  PubMed  Google Scholar 

  52. Gudjoncik A, Guenancia C, Zeller M, Cottin Y, Vergely C, Rochette L (2014) Iron, oxidative stress, and redox signaling in the cardiovascular system. Mol Nutr Food Res 58(8):1721–1738. https://doi.org/10.1002/mnfr.201400036

    Article  CAS  PubMed  Google Scholar 

  53. Siquier-Coll J, Bartolomé I, Perez-Quintero M et al (2019) Serum, erythrocyte and urinary concentrations of iron, copper, selenium and zinc do not change during an incremental test to exhaustion in either normothermic or hyperthermic conditions. J Therm Biol 86. https://doi.org/10.1016/j.jtherbio.2019.102425

  54. Wu J, Gao Y (2015) Physiological conditions can be reflected in human urine proteome and metabolome. Exp Rev Proteomics 12(6):623–636. https://doi.org/10.1586/14789450.2015.1094380

    Article  CAS  Google Scholar 

  55. Lukaski HC (2004) Vitamin and mineral status: effects on physical performance. Nutrition. 20(7-8):632–644. https://doi.org/10.1016/j.nut.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  56. Collins JF (2016) Copper: basic physiological and nutritional aspects. Academic Press. https://doi.org/10.1016/B978-0-12-802168-2.00007-5

  57. Lukaski HC, Hoverson BS, Gallagher SK, Bolonchuk WW (1990) Physical training and copper, iron, and zinc status of swimmers. Am J Clin Nutr 51(6):1093–1099. https://doi.org/10.1093/ajcn/51.6.1093

    Article  CAS  PubMed  Google Scholar 

  58. Wagner KH, Reichhold S, Hölzl C, Knasmüller S, Nics L, Meisel M, Neubauer O (2010) Well-trained, healthy triathletes experience no adverse health risks regarding oxidative stress and DNA damage by participating in an ultra-endurance event. Toxicology. 278(2):211–216. https://doi.org/10.1016/j.tox.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  59. Powers SK, Nelson WB, Hudson MB (2011) Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med 51(5):942–950. https://doi.org/10.1016/j.freeradbiomed.2010.12.009

    Article  CAS  PubMed  Google Scholar 

  60. Llorente Ballesteros MT, Navarro Serrano I, Izquierdo Álvarez S (2017) Reference levels of trace elements in hair samples from children and adolescents in Madrid, Spain. J Trace Elem Med Biol 43:113–120. https://doi.org/10.1016/j.jtemb.2016.12.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our thanks go to the Liceo Club of rhythmic gymnastics (Cordoba, Spain), and in a very special way to Francisco Muñoz, who provided samples of the girls who practiced rhythmic gymnastics. Our thanks to the Secondary School “Nuevas Poblaciones” (Cordoba, Spain), and in a very special way to Prof. María Teresa González-León, who provided the samples of the girls of the control group.

Funding

Financial support was provided by Portugal national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through Grant UIDB/50006/2020. Ricardo Páscoa also received funding from FCT through program DL 57/2016 – Norma transitória.

Author information

Authors and Affiliations

Authors

Contributions

Julián Campos-Pérez m02capej@uco.es: term, conceptualization, methodology, validation, formal analysis, investigation, statistical analysis, and writing—original.

Ricardo Pascoa pascoa_r@hotmail.com: statistical analysis and writing—original.

João Pedro Almeida Lopes jlopes@ff.ulisboa.pt: statistical analysis and writing—original.

Fernando Cámara-Martos fernando.camara@uco.es: term, conceptualization, methodology, validation, statistical analysis, writing—original, and supervision.

Corresponding author

Correspondence to Julián Campos-Pérez.

Ethics declarations

Informed Consent

Informed consent was obtained from all individual participants included in this study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The name of “João Almeida Lopes” is now corrected in the author group.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos-Pérez, J., Páscoa, R.N.M.J., Lopes, J.A. et al. Relationship Between Gymnastic Rhythmic Practice and Body Composition, Physical Performance, and Trace Element Status in Young Girls. Biol Trace Elem Res 200, 84–95 (2022). https://doi.org/10.1007/s12011-021-02651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02651-z

Keywords

Navigation