Skip to main content
Log in

Assessment of the Antibacterial Potential of Biosynthesized Silver Nanoparticles Combined with Vancomycin Against Methicillin-Resistant Staphylococcus aureus–Induced Infection in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is considered one of the most serious multidrug-resistant bacteria worldwide. MRSA resistance to methicillin antibiotics made vancomycin, the acceptable treatment option. Silver nanoparticles (Ag-NPs) are among the well-known antibacterial substances showing multimode antibacterial action. Therefore, Ag-NPs are appropriate applicants for use in combination with vancomycin in order to augment its antibacterial action. This study aimed to biosynthesize silver nanoparticles and to evaluate its antibacterial activity against MRSA alone and when combined with vancomycin both in vitro and in vivo. Agaricus bisporus is used to reduce the silver nitrate salts in solution to yield silver nanoparticles which was characterized by UV-visible spectrophotometric analysis that shows maximum absorption at 420 nm as a preliminary confirmation for nanoparticles synthesis, Energy-Dispersive Analysis of X-ray (EDX) which confirms the crystalline nature of silver nanoparticles and transmission electron microscopy (TEM) image shows the particles in spherical form with mean size 27.45 nm. The synthesized silver nanoparticles were tested for antibacterial activity against MRSA, and the synergetic effects of the combination of silver nanoparticles and vancomycin were evaluated. The results showed a strong synergistic antibacterial effect between Ag-NPs and vancomycin in vitro with fractional inhibitory concentration 0.37 and in vivo against MRSA strain. The result revealed that mycosynthesized silver nanoparticles (NPs) enhance the in vitro and in vivo antibacterial activity of vancomycin against MRSA. These results suggested that sliver nanoparticles have an effective antibacterial activity against MRSA count, histopathology, and liver enzymes as well as protective immune response specially when combined with vancomycin in the lungs of infected rats with MRSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The original datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Qiu J, Wang D, Xiang H, Feng H, Jiang Y, Xia L et al (2010) Subinhibitory concentrations of thymol reduce enterotoxins A and B and a-hemolysin production in Staphylococcus aureus isolates. PLoS One 5(3):e9736. https://doi.org/10.1371/journal.pone.0009736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Manukumar HM, Umesha S (2017) MALDI-TOF-MS based identification and molecular characterization of food associated methicillin-resistant Staphylococcus aureus. Sci Rep 7:11414. https://doi.org/10.1038/s41598-017-11597-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Price JR, Cole K, Bexley A, Kostiou V, Eyre DW, Golubchik T, Wilson DJ, Crook DW, Walker AS, Peto TEA, Llewelyn MJ, Paul J, Modernising Medical Microbiology informatics group (2017) Transmission of Staphylococcus aureus between health-care workers, the environment, and patients in an intensive care unit: a longitudinal cohort study based on whole-genome sequencing. Lancet Infect Dis 17:207–214. https://doi.org/10.1016/S1473-3099(16)30413-3

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fraunholz M, Sinha B (2012) Intracellular Staphylococcus aureus: live-in and let die. Front Cell Infect Microbiol 2:43. https://doi.org/10.3389/fcimb.2012.00043

    Article  PubMed  PubMed Central  Google Scholar 

  5. Poovelikunnel T, Gethin G, Humphreys H (2015) Mupirocin resistance: clinical implications and potential alternatives for the eradication of MRSA. J Antimicrob Chemother 70(10):2681–2692. https://doi.org/10.1093/jac/dkv169

    Article  CAS  PubMed  Google Scholar 

  6. Zhang S, Sun X, Chang W, Dai Y, Ma X (2015 Aug 19) Systematic review and meta-analysis of the epidemiology of vancomycin-intermediate and heterogeneous vancomycin-intermediate Staphylococcus aureus isolates. PLoS One 10(8):e0136082. https://doi.org/10.1371/journal.pone.0136082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martin MA (1994) Methicillin-resistant Staphylococcus aureus: the persistent nosocomial pathogen. Curr Clin Top Infect Dis 14:170–191 https://academic.oup.com/jac/article/41/3/325/680999

    CAS  PubMed  Google Scholar 

  8. Gardete S, Tomasz A (2014) Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest 124:2836–2840. https://doi.org/10.5772/67338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB (2019) Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 5:02192. https://doi.org/10.1016/j.heliyon.2019.02192

    Article  Google Scholar 

  10. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR (2018) Nano-strategies to fight multidrug resistant bacteria- “a battle of the titans”. Front Microbiol 9:1441. https://doi.org/10.3389/fmicb.2018.01441

    Article  PubMed  PubMed Central  Google Scholar 

  11. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32. https://doi.org/10.1186/2228-5326-2-32

    Article  Google Scholar 

  12. Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M (2014) Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol 98:1951–1961. https://doi.org/10.1007/s00253-013-5473-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta RK, Kumar V, Gundampati RK, Malviya M, Hasan SH, Jagannadham MV et al (2017) Biosynthesis of silver nanoparticles from the novel strain of Streptomyces Sp. BHUMBU-80 with highly efficient electroanalytical detection of hydrogen peroxide and antibacterial activity. J. Environ. Chem. Eng 5:5624–5635. https://doi.org/10.1016/j.jece.2017.09.029

    Article  CAS  Google Scholar 

  14. Loo YY, Rukayadil Y, Nor-Khaizura MAR, Kuan CH, Chieng BW, Nishibuchi M et al (2018) In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front Microbiol 9:1555. https://doi.org/10.3389/fmicb.2018.01555

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huang JQ, Li D, Sun Y, Lu Y, Su X, Yang H, Wang Y, Wang W, Shao N, He J, Hong, Chen C (2007) Biosynthesis of silver and gold NPs by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104. https://doi.org/10.1088/0957-4484/18/10/105104

    Article  CAS  Google Scholar 

  16. Austin LA, Mackey MA, Dreaden EC, ElSayed MA (2014 Jul) The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 88(7):1391–1417. https://doi.org/10.1007/s00204-014-1245-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 5:17–28. https://doi.org/10.1016/j.jare.2015.02.007

    Article  CAS  Google Scholar 

  18. Zhang XF, Liu ZG, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:E1534. https://doi.org/10.3390/ijms17091534

    Article  CAS  PubMed  Google Scholar 

  19. Khan AU, Malik N, Khan M, Cho MH, Khan MN (2018) Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst Eng 41(1):1–20

    Article  CAS  Google Scholar 

  20. Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199:344–370. https://doi.org/10.1007/s12011-020-02138-3

    Article  CAS  PubMed  Google Scholar 

  21. Azmath P, Baker S, Rakshith D, Satish S (2016) Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm J 24:140–146. https://doi.org/10.1016/j.jsps.2015.01.008

    Article  PubMed  Google Scholar 

  22. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68:88–92. https://doi.org/10.1016/j.colsurfb.2008.09.022

    Article  CAS  PubMed  Google Scholar 

  23. Du L, Xu Q, Huang M, Xian L, Feng JX (2015) Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue. Mater Chem Phys 160:40–47. https://doi.org/10.1016/j.matchemphys.2015.04.003

    Article  CAS  Google Scholar 

  24. Netala VR, Bethu MS, Pushpalatah B, Baki VB, Aishwarya S, Rao JV et al (2016) Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int J Nanomedicine 11:5683–5696. https://doi.org/10.2147/IJN.S112857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blackwell M (2011) The Fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 98(3):426–438. https://doi.org/10.3732/ajb.1000298

    Article  PubMed  Google Scholar 

  26. PM. Kirk, PF. Cannon, JC. David, JA. Stalpers, Ainsworth and Brisby’s Dictionary of the Fungi. 10th ed. Wallingford: CAB International (2008). http://www.slideshare.net/fitolima/dictionary-of-fungi-kirk-et-al-2008-10a-edicao

  27. Wasser SP (2011) Medicinal mushroom science: history, current status, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89:1323–1332. https://doi.org/10.1007/s00253-010-3067-4

    Article  CAS  PubMed  Google Scholar 

  28. Younis Ahmed M, Abdel-Aziz Marwa M, Mohammed Y (2019) Evaluation of some biological applications of Pleurotus citrinopileatus and Boletus edulis fruiting bodies extracts. Current Pharmaceutical Biotechnology Journal 20(15):1309–1320. https://doi.org/10.2174/1389201020666190904162403

    Article  CAS  Google Scholar 

  29. Gregori A, Svagelj M, Pohleven F (2007) Cultivation techniques and medicinal properties of Pleu-rotus spp. Food Technol Biotechnol 45(3):236–247

    Google Scholar 

  30. Younis AM, Wu FS, El Shikh HH (2015) Antimicrobial activity of extracts of the oyster culinary medicinal mushroom Pleurotus ostreatus (higher Basidiomycetes) and identification of a new antimicrobial compound. Int J Med Mushrooms 17(6):579–590. https://doi.org/10.1615/intjmedmushrooms.v17.i6.80

    Article  PubMed  Google Scholar 

  31. Gurunathan S, Raman J, Abd Malek SN, John PA, Vikineswary S (2013) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine 8:4399–4413. https://doi.org/10.2147/IJN.S51881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abdel-Aziz MM, Yosri M, Amin BH (2017) Control of imipenem resistant -Klebsiella pneumoniae pulmonary infection by oral treatment using a combination of mycosynthesized Ag-nanoparticles and imipenem. Journal of Radiation Research and Applied Sciences 10(4):353–360. https://doi.org/10.1016/j.jrras.2017.09.002

    Article  CAS  Google Scholar 

  33. National Committee for Clinical Laboratory Standards NCCLS (2000): Methods for Dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standards- fifth edition. NCCLS document M7-A5. NCCLS: Wayne, PA, USA

  34. Lorian 5th edition, Chapter 9 (2005) Antimicrobial combinations, in Antibiotics in laboratory medicine, pp. 365–441. Lippincott Williams and Wilkins, Philadelphia, PA 19106 USA http://www.lww.com/0-7817-4983-2

  35. Michal Olszewski A, Nicole Falkowski R, Surana R, Sonstein J, Anne H, Bethany B, Moore BGH, Toews BG (2007 Nov 1) Effect of laparotomy on clearance and cytokine induction in Staphylococcus aureus–infected lungs. Am J Respir Crit Care Med 176(9):921–929. https://doi.org/10.1164/rccm.200606-763OC

    Article  CAS  PubMed  Google Scholar 

  36. Shatzkes K, Singleton E, Tang C, Zuena M, Shukla S, Gupta S, Dharani S, Onyile O, Rinaggio J, Connell ND, Kadouri DE (2016) Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. M. Bio 7(6):e01847–e01816. https://doi.org/10.1128/mBio.01847-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bancroft JD, Gamble M (2008) Theory and practice of histological techniques, 6th edn. Churchill Livingstone, Philadelphia

    Google Scholar 

  38. Rahisuddin SA, AL-Thabaiti Z, Khan N (2015) Manzoor, biosynthesis of silver nanoparticles and its antibacterial and antifungal activities towards gram-positive, gram-negative bacterial strains and different species of Candida fungus. Bioprocess Biosyst Eng 38(9):1773–1781. https://doi.org/10.1007/s00449-015-1418-3

    Article  CAS  PubMed  Google Scholar 

  39. Kumar SA, Abyaneh MK, Gosavi SW et al (2007). 439–45) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3):439–445. https://doi.org/10.1007/s10529-006-9256-7

    Article  CAS  Google Scholar 

  40. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 53(1):55–59. https://doi.org/10.1016/j.colsurfb.2006.07.014

    Article  CAS  PubMed  Google Scholar 

  41. Narasimha G, Janardhan, Alzohairy M, Khadr H, Mallikarjuna K (2013) Extracellular synthesis, characterization and antibacterial activity of silver nanoparticles by Actinomycetes isolative. Int. J. Nanodimens 4:77–83. https://doi.org/10.7508/IJND.2013.01.010

    Article  Google Scholar 

  42. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65. https://doi.org/10.1186/s12951-017-0308-z

    Article  CAS  Google Scholar 

  43. Sudhakar T, Nanda A, Babu SG, Janani S, Evans MD, Markose TK (2014) Synthesis of silver nanoparticles from edible mushroom and its antimicrobial activity against human pathogens. International Journal of PharmTech Research 6(5):1718–1723

    CAS  Google Scholar 

  44. Aruguete DM, Hochella MF Bacteria-nanoparticle interactions and their environmental implications. Environ. Chem. 7:3–9. https://doi.org/10.1071/EN09115

  45. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489. https://doi.org/10.1007/s11051-006-9150-1

    Article  CAS  Google Scholar 

  46. Pareek V, Gupta R, Panwar J (2018) Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Mater Sci Eng C Mater Biol Appl 90:739–749. https://doi.org/10.1016/j.msec.2018.04.093

    Article  CAS  PubMed  Google Scholar 

  47. Wagner H, Ulrich-Merzenich G Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16(2–3):97–110. https://doi.org/10.1016/j.phymed.2008.12.018

  48. Dhanasekaran D, Latha S, Saha S, Thajuddin N, Panneerselvam A (2013) Extracellular biosynthesis, characterisation and in-vitro antibacterial potential of silver nanoparticles using Agaricus bisporus. J Experim Nanosci 8(4):579–588. https://doi.org/10.1080/17458080.2011.577099

    Article  CAS  Google Scholar 

  49. Hwang IS, Hwang JH, Choi H, Kim K-J, Lee DG (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. Journal of medical microbiology 61:1719–1726. https://doi.org/10.1099/jmm.0.047100-0

    Article  CAS  PubMed  Google Scholar 

  50. Hassanen EI, Ragab E (2021) In vivo and in vitro assessments of the antibacterial potential of chitosan-silver Nanocomposite against methicillin-resistant Staphylococcus aureus–induced infection in rats. Biol Trace Elem Res 199:244–257. https://doi.org/10.1007/s12011-020-02143-6

    Article  PubMed  Google Scholar 

  51. Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V et al (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333e6340–6333e6340. https://doi.org/10.1016/j.biomaterials.2009.07.065

    Article  CAS  Google Scholar 

  52. Panacek A, Prucek R, Safarova D, Dittrich M, Richtrova J, Benickova K, Zboril R, Kvitek L (2011) Acute and chronic toxicity effects of silver nanoparticles (Nps) on drosophila melanogaster. Environ Sci Technol 45:4974e4979–4974e4979. https://doi.org/10.1021/es104216b

    Article  CAS  Google Scholar 

  53. Kvitek L, Vanickova M, Panacek A, Soukupova J, Dittrich M, Valentova E, Prucek R, Bancirova M, Milde D, Zboril R (2009) Initial study on the toxicity of silver nanoparticles (Nps) against Paramecium caudatum. J Phys Chem C 113:4296e4300–4296e4300. https://doi.org/10.1021/jp808645e

    Article  CAS  Google Scholar 

  54. Krajewski S, Prucek R, Panacek A, Avci-Adali M, Nolte A, Straub A, Zboril R, Wendel HP, Kvitek L (2013) Hemocompatibility evaluation of different silver nanoparticle concentrations employing a modified chandler-loop in vitro assay on human blood. Acta Biomater 9:7460e7468–7460e7468. https://doi.org/10.1016/j.actbio.2013.03.016

    Article  CAS  Google Scholar 

  55. Reidy B, Haase A, Luch A, Dawson KA, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Mater. 6(6):2295–2350. https://doi.org/10.3390/ma6062295

    Article  CAS  Google Scholar 

  56. Rai M, Deshmukh S, Ingle A, Gade A (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112(5):841–852. https://doi.org/10.1111/j.1365-2672.2012.05253.x

    Article  CAS  PubMed  Google Scholar 

  57. Wypij M, Czarnecka J, Świecimska M, Dahm H, Rai M, Golinska P (2018) Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J Microbiol Biotechnol 34(2):23–29. https://doi.org/10.1007/s11274-017-2406-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dahm H (2020) Silver nanoparticles in wound infections: present status and future prospects. In: Rai M (ed) Nanotechnology in skin, soft tissue, and bone infections. Springer International Publishing, Cham, pp 151–168

    Chapter  Google Scholar 

  59. Alavi M, Rai M (2019) Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria. Expert Rev Anti-Infect Ther 17(6):419–428. https://doi.org/10.1080/14787210.2019.1614914

    Article  CAS  PubMed  Google Scholar 

  60. Pumerantz A, Muppidi K, Agnihotri S, Guerra C, Venketaraman V, Wang J, Betageri G (2011) Preparation of liposomal vancomycin and intracellular killing of meticillin-resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents 37:140–144 10 .1016/j.ijantimicag.2010.10.011

    Article  CAS  Google Scholar 

  61. Kolaczkowska E, Jenne CN, Surewaard BG, Thanabalasuriar A, Lee WY, Sanz MJ, Mowen K, Opdenakker G, Kubes P (2015) Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun 6:6673. https://doi.org/10.1038/ncomms7673

    Article  CAS  PubMed  Google Scholar 

  62. Ramaiah SK (2007) A toxicologist guide to the diagnostic interpretation of hepatic biochemical parameters. Food Chem Toxicol 45:1551–1557. https://doi.org/10.1016/j.fct.2007.06.007

    Article  CAS  PubMed  Google Scholar 

  63. Hassanen EI, Khalaf AA, Tohamy AF, Mohammed ER, Farroh KY (2019) Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int J Nanomedicine:4723–4739. https://doi.org/10.2147/IJN.S207644

  64. Vasquez RD, Apostol JG, de Leon JD et al (2016) Polysaccharide-mediated green synthesis of silver nanoparticles from Sargassum siliquosum JG Agardh: assessment of toxicity and hepatoprotective activity. OpenNano 1:16–24. https://doi.org/10.1016/j.onano.2016.03.001

    Article  Google Scholar 

  65. Roy N, Gaur A, Jain A, Bhattacharya S, Rani V (2013) Green synthesis of silver nanoparticles: an aproach to overcome toxicity. Environ Toxicol Pharmacol 36(3):807–812. https://doi.org/10.1016/j.etap.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  66. Chatterjee S, Dey A, Dutta R, Dey S, Acharya K (2011) Hepatoprotective effect of the ethanolic extract of Calocybe indica on mice with CCl4 hepatic intoxication. Int J PharmTech Res 3(4):2162–2168 https://www.researchgate.net/publication/259479079

    CAS  Google Scholar 

  67. Bartlett AH, Foster TJ, Hayashida A, Park PW (2008) Alphatoxin facilitates the generation of CXC chemokine gradients and stimulates neutrophil homing in Staphylococcus aureus pneumonia. J Infect Dis 198:1529–1535. https://doi.org/10.1086/592758

    Article  CAS  PubMed  Google Scholar 

  68. Small CL, McCormick S, Gill N, Kugathasan K, Santosuosso M, Donaldson N, Heinrichs DE, Ashkar A, Xing Z (2008) NK cells play a critical protective role in host defense against acute extracellular Staphylococcus aureus bacterial infection in the lung. J. Immunol:1805558–1805568. https://doi.org/10.4049/jimmunol.180.8.5558

  69. Ventura CL, Higdon R, Hohmann L, Martin D, Kolker E, Liggitt HD, Skerrett SJ, Rubens CE (2008) Staphylococcus aureus elicits marked alterations in the airway proteome during early pneumonia. Infect. Immun:765862–765872. https://doi.org/10.1128/IAI.00865-08

  70. Kiem S, Schentag JJ (2008) Interpretation of antibiotic concentration ratios measured in epithelial lining fluid. Antimicrob Agents Chemother 52:24–36. https://doi.org/10.1128/AAC.00133-06

    Article  CAS  PubMed  Google Scholar 

  71. Rello J, Mallol J (2006) Optimal therapy for methicillin-resistant Staphylococcus aureus pneumonia: what is the best dosing regimen? Chest 130:938–940. https://doi.org/10.1378/chest.130.4.938

    Article  PubMed  Google Scholar 

  72. Theuretzbacher U (2007) Tissue penetration of antibacterial agents: how should this be incorporated into pharmacodynamic analyses? Curr Opin Pharmacol 7:498–504. https://doi.org/10.1016/j.coph.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  73. Bhattacharjee M (2016) Chemistry of antibiotics and related drugs. Springer Science and Business Media, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.Y and M. M guided the research, performed the experiments, performed data analysis, and wrote the manuscript. M A is a research scholar who performed the experiments. A. Y assisted in the experiments. N S is the professor of Microbiology who supervised the whole studies and revised the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Mohamed Yosri.

Ethics declarations

Ethics Approval and Consent to Participate

The experimental protocol has been accepted by the Faculty of Medicines Scientific Research Ethics Committee, Al-Azhar University.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awad, M., Yosri, M., Abdel-Aziz, M.M. et al. Assessment of the Antibacterial Potential of Biosynthesized Silver Nanoparticles Combined with Vancomycin Against Methicillin-Resistant Staphylococcus aureus–Induced Infection in Rats. Biol Trace Elem Res 199, 4225–4236 (2021). https://doi.org/10.1007/s12011-020-02561-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02561-6

Keywords

Navigation