Skip to main content
Log in

Two Decades’ Variation of Trace Elements in Bones of the Endangered East Asian Finless Porpoise (Neophocaena asaeorientalis sunameri) from the East China Sea, China

Biological Trace Element Research Aims and scope Submit manuscript

Abstract

There has been increasing concern about trace element accumulation in finless porpoises over the past decades, while the long-term variation of its concentration has been little known. Since most soft tissues of porpoises in the past were not preserved until now, the bone tissue is the only ideal material available. Here, 27 East Asian finless porpoise bone samples collected from Nantong, the East China Sea during two periods (1984–1992 and 2009) were used to explore the temporal variation of nine typical elements’ concentration (Fe, Mn, Cu, Ni, Hg, Cr, Pb, As, and Cd, dry weight). An upward trend for total trace element accumulation from 329.04 mg/kg in 1984–1992 to 1535.81 mg/kg in 2009 was found; this could have resulted from the increasing industrial development in the Nantong region. The Mn, Fe, and As levels increased significantly while the concentrations of Cd, Cu, and Pb significantly decreased. Generally, our results suggested that most trace elements posed low threats to East Asian finless porpoises’ health during both periods, while elements Mn (2009), Ni (both periods), Fe (2009), and As (2009) posed a potentially higher health risk to porpoises. Thus, the trace element levels warrant concern and continuous monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Alonso-Magdalena P, Tudurí E, Marroquí L, Quesada I, Sargis RM, Nadal A (2018) Toxic effects of common environmental pollutants in pancreatic β-cells and the onset of diabetes mellitus. In: Riviere J, Monteiro-Riviere N (eds) Reference module in biomedical sciences. Elsevier

  2. Kim SG, Kim SS, Choi HG, An YR (2011) Concentrations of trace metals in the tissues of long-beaked common dolphins (Delphinus capensis) in the East Sea, Korea. Ocean Sci J 46:55–62

    CAS  Google Scholar 

  3. Yilmaz AB, Sangun MK, Yaglioglu D, Turan C (2010) Metals (major, essential to non-essential) composition of the different tissues of three demersal fish species from İskenderun Bay, Turkey. Food Chem 123(2):410–415

    CAS  Google Scholar 

  4. Storelli MM, Zizzo N, Marcotrigiano GO (1999) Heavy metals and methylmercury in tissues of Risso’s dolphin (Grampus griseus) and Cuvier’s beaked whale (Ziphius cavirostris) stranded in Italy (South Adriatic Sea). B Environ Contam Tox 63:703–710

    CAS  Google Scholar 

  5. Hu Y, Qi S, Wu C, Ke Y, Chen J, Chen W, Gong X (2012) Preliminary assessment of heavy metal contamination in surface water and sediments from Honghu Lake, East Central China. Front Earth Sci Chin 6:39–47

    CAS  Google Scholar 

  6. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164

    PubMed  PubMed Central  Google Scholar 

  7. Yi Y, Zhang S (2012) The relationships between fish heavy metal concentrations and fish size in the upper and middle reach of Yangtze River. Procedia Environ Sci 13:1699–1707

    CAS  Google Scholar 

  8. Yu R, Ji J, Yuan X, Song Y, Wang C (2012) Accumulation and translocation of heavy metals in the canola (Brassica napus L.)—soil system in Yangtze River Delta, China. Plant Soil 353:33–45

    CAS  Google Scholar 

  9. Kamrin MA, Ringer RK (1994) PCB residues in mammals: a review. Toxicol Environ Chem 41:63–84

    CAS  Google Scholar 

  10. Tanabe S, Iwata H, Tatsukawa R (1994) Global contamination by persistent organochlorines and their ecotoxicological impact on marine mammals. Sci Total Environ 154:163–177

    CAS  PubMed  Google Scholar 

  11. Zhou X, Guang X, Sun D, Xu S, Li M, Seim I et al (2018) Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat Commun 9:1276

    PubMed  PubMed Central  Google Scholar 

  12. Macdonald RW, Mackay D, Hickie BE (2002) Contaminant amplification in the environment. Environ Sci Technol 36:4918–4924

    Google Scholar 

  13. Letcher RJ, Bustnes JO, Dietz R, Jenssen BM, Jorgensen EH, Sonne C, Verreault J, Vijayan MM, Gabrielsen GW (2010) Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Sci Total Environ 408:2995–3043

    CAS  PubMed  Google Scholar 

  14. Gulland FMD, Hall AJ (2007) Is marine mammal health deteriorating? Trends in the global reporting of marine mammal disease. EcoHealth 4:135–150

    Google Scholar 

  15. Yang J, Yin J, Xu HL, Gong XQ, Yu RP, Wang D (2005) The ingestion and accumulation of zinc, copper, lead, cadmium and arsenic in the Yangtze finless porpoise, Neophocaena phocaenoides asiaeorientalis. Acta Hydrobiol Sin 29:557–563 (In Chinese)

    Google Scholar 

  16. Hung CLH, Lau RKF, Lam JCW, Jefferson TA, Hung SK, Lam MHW, Lam PKS (2007) Risk assessment of trace elements in the stomach contents of Indo-Pacific humpback dolphins and finless porpoises in Hong Kong waters. Chemosphere 66:1175–1182

    CAS  PubMed  Google Scholar 

  17. Liu J, Chen B, Jefferson TA, Wang H, Yang G (2016) Trace element concentrations, risks and their correlation with metallothionein genes polymorphism: a case study of narrow-ridged finless porpoises (Neophocaena asiaeorientalis) in the East China Sea. Sci Total Environ 575:628–638

    PubMed  Google Scholar 

  18. Xu TY, Yao SC, Fan MN, Tang WQ (2016) Concentration and distribution of trace elements in finless porpoise (Neophocaena asiaeorientalis sunameri) in Yangtze River estuary. Chinese Journal of Zoology 51(1):22–32 (In Chinese)

    Google Scholar 

  19. Zhang X, Yu RQ, Xian S, Ding Y, Chen H, Xi C, Wu Y (2017) Tissue partition and risk assessments of trace elements in Indo-Pacific finless porpoises (Neophocaena phocaenoides) from the Pearl River Estuary coast, China. Chemosphere 185:1197–1207

    CAS  PubMed  Google Scholar 

  20. Yang L, Yu D, Lu P (1988) Studies on the levels of some metals and organichlorine compounds in Lipotes vexillifer and Neophocaena phocaenoides. Acta Theriologica Sinica 8(2):122–127

    Google Scholar 

  21. Das K, Siebert U, Fontaine M, Jauniaux T, Holsbeek L, Bouquegneau J (2004) Ecological and pathological factors related to trace metal concentrations in harbour porpoises Phocoena phocoena from the North Sea and adjacent areas. Marine Ecology Progr 281:283–295

    CAS  Google Scholar 

  22. O’Hara TM, Hanns C, Bratton GR, Taylor RJ, Woshner V (2006) Essential and non-essential elements in eight tissue types from subsistencehunted bowhead whale: nutritional and toxicological assessment. Int J Circumpolar Health 65(3):228–242

    PubMed  Google Scholar 

  23. Auðunsson G.A, Vikingsson GA (2013) Concentrations of mercury and other trace elements in Minke whales from Icelandic waters. Paper SC/F13/SP23 Presented to the IWC SP Expert Panel, Reykjavik, p. 20. Available from the IWC https://iwc.int/home. Accessed Dec 2016.

  24. Borrell A, Clusa M, Aguilar A, Drago M (2015) Use of epidermis for the monitoring of tissular trace elements in Mediterranean striped dolphins (Stenella coeruleoalba). Chemosphere 122:288–294

    CAS  PubMed  Google Scholar 

  25. Lavery TJ, Kemper CM, Ken S, Schultz CG, Peter C, Mitchell JG, Laurent S (2009) Heavy metal toxicity of kidney and bone tissues in south Australian adult bottlenose dolphins (Tursiops aduncus). Mar Environ Res 67:1–7

    CAS  PubMed  Google Scholar 

  26. Cáceres-Saez I, Panebianco MV, Perez-Catà S, Dellabianca NA, Negri MF, Ayala CN, Goodall RNP, Cappozzo HL (2016) Mineral and essential element measurements in dolphin bones using two analytical approaches. Chem Ecol 32(7):638–652

    Google Scholar 

  27. Glimcher MJ (2006) Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev Mineral Geochem 64:223–282

    CAS  Google Scholar 

  28. Honda K, Fujise Y, Itano K, Tatsukawa R (1984) Composition of chemical components in bone of striped dolphin, Stenella coeruleoalba: distribution characteristics of heavy metals in various bones. Agric Biol Chem 48(3):677–683

    CAS  Google Scholar 

  29. Evtimova V, Parvanov D, Grozdanov A, Dimitrov K, Tserkova F, Yordanov S, Velina Y, Petrova E, Yordanova Y, Delov V (2018) Cetacean mortality along the Bulgarian Black Sea Coast during 2017. Zoonotes 134:1–4

    Google Scholar 

  30. Liu N, Li X, Zhang D, Liu Q, Xiang L, Liu K, Yan D, Li Y (2017) Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from the Nantong Coast, China. Mar Pollut Bull 114(1):571–576

    CAS  PubMed  Google Scholar 

  31. Huang S, Tu J, Liu H, Hua M, Liao Q, Feng J, Weng Z, Huang G (2009) Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China. Atmos Environ 43(36):5781–5790

    CAS  Google Scholar 

  32. Tu NP, Ha NN, Matsuo H, Tuyen BC, Tanabe S, Takeuchi I (2012) Biomagnification profiles of trace elements through the food web of an integrated shrimp mangrove farm in Ba Ria Vung Tau, South Vietnam. Am J Environ Sci 8(2):117–129

    Google Scholar 

  33. Sample BE, Opresko DM, Suter GW (1996) Toxicological benchmarks for wildlife: 1996 revision. Lockheed Martin Energy Systems

  34. CCME (1998) Protocol for the derivation of Canadian tissue residue guidelines for the protection of wildlife that consume aquatic biota. Canadian Council of Ministers of the Environment, Winnipeg

    Google Scholar 

  35. USEPA (1995) Great Lakes water quality initiative technical support document for wildlife criteria. Office of Science and technology. Office of Water, Washington, DC

    Google Scholar 

  36. USEPA (1989) Risk-assessment guidance for superfund. Volume 1. Human health evaluation manual. Part A. Interim report (Final). Environmental Protection Agency, Washington, DC (USA). Office of Solid Waste and Emergency Waste, Washington, DC

  37. Chumlea WC, Wisemandle W, Guo SS, Siervogel RM (2002) Relations between frame size and body composition and bone mineral status. Am J Clin Nutr 75:1012–1016

    CAS  PubMed  Google Scholar 

  38. Gao A, Zhou KY (1993) Growth and reproduction of three populations of finless porpoise (Neophocaena pkocaenoides) in Chinese waters. Aquat Mamm 16:3–12

    Google Scholar 

  39. Borrell A, Bloch D, Desportes G (1995) Age trends and reproductive transfer of organochlorine compounds in long-finned pilot whale from Faroe Islands. Environ Pollut 88(3):283–292

    CAS  PubMed  Google Scholar 

  40. Ko FC, We NY, Chou LS (2014) Bioaccumulation of persistent organic pollutants in stranded cetaceans from Taiwan coastal waters. J Hazard Mater 277:127–133

    CAS  PubMed  Google Scholar 

  41. Xiong X, Qian Z, Mei Z, Wu J, Hao Y, Wang K, Wu C, Wang D (2019) Trace elements accumulation in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) – a threat to the endangered freshwater cetacean. Sci Total Environ 686:797–804

    CAS  PubMed  Google Scholar 

  42. Yang J, Miyazaki N, Yang J, Miyazaki N (2003) Moisture content in Dall’s porpoise (Phocoenoides dalli) tissues: a reference base for conversion factors between dry and wet weight trace element concentrations in cetaceans. Environ Pollut 121(3):345–347

    CAS  PubMed  Google Scholar 

  43. Zaichick V (2013) Data for the reference man: skeleton content of chemical elements. Radiat Environ Bioph 52:65–85

    CAS  Google Scholar 

  44. Delgado J, Nieto JM, Boski T (2010) Analysis of the spatial variation of heavy metals in the Guadiana estuary sediments (SW Iberian Peninsula) based on GIS-mapping techniques. Estuar Coast Shelf S 88:71–83

    CAS  Google Scholar 

  45. Mil-Homens M, Vale C, Raimundo J, Pereira P, Brito P, Caetano M (2014) Major factors influencing the elemental composition of surface estuarine sediments: the case of 15 estuaries in Portugal. Mar Pollut Bull 84:135–146

    CAS  PubMed  Google Scholar 

  46. Wagemann R, Muir DCG (1984) Concentrations of heavy metals and organochlorines in marine mammals of northern waters: overview and evaluation. Western Region, Department of Fisheries and Ocean, Canada

  47. Jirillo E, Caccavo D, Magrone T, Piccigallo E, Amati L, Lembo A, Kalis C, Gumenscheimer M (2002) The role of the liver in the response to LPS: experimental and clinical findings. J Endotoxin Res 8:319–327

    CAS  PubMed  Google Scholar 

  48. Babula P, Masarik M, Vojtech A (2012) Mammalian metallothioneins: properties and functions. Metallomics 4:739–750

    CAS  PubMed  Google Scholar 

  49. Parsons EC (1999) Trace element concentrations in the tissues of cetaceans from Hong Kong’s territorial waters. Environ Conserv 26(1):30–40

    CAS  Google Scholar 

  50. Frodello JP, Marchand B (2001) Cadmium, copper, lead, and zinc in five toothed whale species of the Mediterranean Sea. Int J Toxicol 20:339–343

    CAS  PubMed  Google Scholar 

  51. Lavery TJ, Butterfield N, Kemper CM, Reid RJ, Sanderson KJ (2008) Metals and selenium in the liver and bone of three dolphin species from South Australia, 1988-2004. Sci Total Environ 390:77–85

    CAS  PubMed  Google Scholar 

  52. Han ZX, Zhu Z, Wu DD, Liu YR (2012) Distributation and implications of heavy metal in Jiangsu coastal sediments in China. Adv Mater Res 549:957–960

    CAS  Google Scholar 

  53. Law RJ, Stringer RL, Allchin CR, Jones BR (1996) Metals and organochlorines in sperm whales (Physeter macrocephalus) stranded around the North Sea during the 1994/1995 winter. Mar Pollut Bull 32:72–77

    CAS  Google Scholar 

  54. Jefferson TA, Hung SK (2004) Neophocaena phocaenoides. Mamm Species:1–12

  55. Vighi M, Borrell A, Aguilar A (2017) Bone as a surrogate tissue to monitor metals in baleen whales. Chemosphere 171:81–88

    CAS  PubMed  Google Scholar 

  56. Méndez-Fernandez P, Webster L, Chouvelon T, Bustamante P, Ferreira M, Gonzalez AF et al (2014) An assessment of contaminant concentrations in toothed whale species of the NW Iberian Peninsula: part II. Trace element concentrations. Sci Total Environ 484:206–217

    PubMed  Google Scholar 

  57. Tran TT, Chowanadisai W, Crinella FM, Chiczdemet A, Lonnerdal B (2002) Effect of high dietary manganese intake of neonatal rats on tissue mineral accumulation, striatal dopamine levels, and neurodevelopmental status. Neurotoxicology 23(4):635–643

    CAS  PubMed  Google Scholar 

  58. Bilandžic N, Sedak M, Đokic M, Gomercic MĐ, Gomercic T, Zadravec M et al (2012) Toxic element concentrations in the bottlenose (Tursiops truncatus), striped (Stenella coeruleoalba) and Risso’s (Grampus griseus) dolphins stranded in eastern Adriatic Sea. Bull Environ Contam Toxicol 89(3):467–473

    PubMed  Google Scholar 

  59. Shrivastava R, Upreti RK, Seth PK, Chaturvedi UC (2002) Effects of chromium on the immune system. FEMS Immunol Med Microbiol 34(1):1–7

    CAS  PubMed  Google Scholar 

  60. Pellisso SC, Munoz MJ, Carballo M, Sanchezvizcaino JM (2008) Determination of the immunotoxic potential of heavy metals on the functional activity of bottlenose dolphin leukocytes in vitro. Vet Immunol Immunopathol 121(3):189–198

    Google Scholar 

  61. Shohamfrider E, Goffman O, Harlavan Y, Kress N, Morick D, Roditielasar M et al (2016) Trace elements in striped dolphins (Stenella coeruleoalba) from the eastern Mediterranean: a 10-years perspective. Mar Pollut Bull 109(1):624–632

    CAS  Google Scholar 

  62. Yasuda Y, Horai S, Itai T, Isobe T, Matsuishi T, Yamada T, Tajima Y, Takahashi S, Tanabe S (2012) A comparative study on temporal trends of trace elements in harbor porpoise (Phocoena phocoena) from coastal waters of North Japan. Interdiscip Stud Environ Chem 6:151–159

  63. Honda K, Tatsukawa R, Itano K, Miyazaki N, Fujiyama T (1983) Heavy metal concentrations in muscle, liver and kidney tissue of striped dolphin, Stenella coeruleoalba, and their variations with body length, weight, age and sex. J Agr Chem Soc Jpn 47:1219–1228

    CAS  Google Scholar 

  64. Eisler R (1984) Trace metal changes associated with age of marine vertebrates. Biol Trace Elem Res 6:165–180

    CAS  PubMed  Google Scholar 

  65. Lavery TJ, Roudnew B, Gill P, Seymour J, Seuront L, Johnson G, Mitchell JG, Smetacek V (2010) Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proc Biol Sci 277:3527–3531

    PubMed  PubMed Central  Google Scholar 

  66. Hou Q, Yang Z, Ji J, Yu T, Chen G, Li J, Xia X, Zhang M, Yuan X (2014) Annual net input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta, China. J Geochem Explor 139:68–84

    CAS  Google Scholar 

  67. Huang S, Tu J, Jin Y, Hua M, Wu X, Xu W, Yang Y, Wang H, Su Y, Cai L (2018) Contamination assessment and source identification of heavy metals in river sediments in Nantong, Eastern China. Int J Environ Res 12:373–389

    CAS  Google Scholar 

  68. Ellingsen DG, Hetland SM, Thomassen Y (2003) Manganese air exposure assessment and biological monitoring in the manganese alloy production industry. J Environ Monitor 5:84–90

    CAS  Google Scholar 

  69. Duka YD, Ilchenko SI, Kharytonov MM, Vasylyeva TL (2011) Impact of open manganese mines on the health of children dwelling in the surrounding area. Emerg Health Threats J 4:7110

    PubMed  Google Scholar 

  70. He F, Zhang Q, Lei J, Fu W, Xu X (2013) Energy efficiency and productivity change of China’s iron and steel industry: accounting for undesirable outputs. Energ Policy 54:204–213

    Google Scholar 

  71. Wang Y, Wang W (1987) Distribution patterns of heavy metals in farm soil and sediments from Yangtze River estuary. Rural Eco-Environ 1987(4):25–28 (In Chinese)

    Google Scholar 

  72. Fang M, Wu Y, Liu H, Jia Y, Zhang Y, Wang X, Wu M, Zhang C (2013) Distribution, sources and ecological risk assessment of heavy metals in sediments of the Yangtze River estuary. Acta Sci Circumst 33(2):563–569 (In Chinese)

    CAS  Google Scholar 

  73. Jarup L (2003) Hazards of heavy metal contamination. Brit Med Bull 68:167–182

    PubMed  Google Scholar 

  74. Fan T, Ye W, Chen H, Lu H, Zhang Y, Li D, Tang Z, Ma Y (2013) Review on contamination and remediation technology of heavy metal in agricultural soil. Ecol Environ Sci 22(10):1727–1736 (In Chinese)

    Google Scholar 

  75. Sun R, Gu J (1992) Analysis on the pesticide poisoning cases in Nantong during 1984-1990. J Nantong Univ Med Sci (2):157–159 (Title translated from Chinese)

  76. Chen W (2016) Research on the reduction and control of chemical pesticide use in Nantong region. J Shanghai Agric Sci Tech 46(1):135–137 (Title translated from Chinese)

  77. Yan Y (1993) Heavy metal pollution and its evaluation of economic fishes in Chinese coastal water. Marine Env Sci 12:99–103 (In Chinese)

    Google Scholar 

  78. Huang H, Ping X, Li L, Liao Y, Shen X (2011) Concentrations and evaluation of heavy metals in sea water, sediments and organisms of Yangtze River Estuary during springs and summers. Ecol Environ Sci 20(5):898–903 (In Chinese)

    Google Scholar 

  79. Desforges J, Sonne C, Levin M, Siebert U, De Guise S, Dietz R (2016) Immunotoxic effects of environmental pollutants in marine mammals. Environ Int 86:126–139

    CAS  PubMed  Google Scholar 

  80. Jiang Q, You Z, Ni L, Qian P (2010) Pollution and potential ecological risk assessment of heavy metals in river sediments of Nantong. Water Resour Prot 26(5):11–19 (In Chinese)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the writing guidance provided by Professor Cheng Sun from Nanjing University, Zhe Hong, China, and the English language editing assistance provided by Miss Grace Hong from Guelph University, Canada, and Zhe Hong.

Funding

This study was funded by the NSF of Jiangsu Province of China (BK20171475), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Methodology: Xiuqing Hao, Di Zhang. Formal analysis and investigations, writing–original draft preparation: Xiuqing Hao, Hong Shan, Caiwen Wu. Conceptualization, writing–review and editing. Funding acquisition: Bingyao Chen.

Corresponding author

Correspondence to Bingyao Chen.

Ethics declarations

Animal Ethics

All procedures were conducted strictly following Chinese law and ethical guidelines for wild animals.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, X., Shan, H., Wu, C. et al. Two Decades’ Variation of Trace Elements in Bones of the Endangered East Asian Finless Porpoise (Neophocaena asaeorientalis sunameri) from the East China Sea, China. Biol Trace Elem Res 198, 493–504 (2020). https://doi.org/10.1007/s12011-020-02080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02080-4

Keywords

Navigation