Skip to main content

Advertisement

Log in

Selenium Overcomes Doxorubicin Resistance in Their Nano-platforms Against Breast and Colon Cancers

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Colon cancer in men and breast cancer in women are regarded as major health burdens, accounting for majority of cancer diagnoses globally. Doxorubicin (DOX) resistance in breast and colon cancers represents the main reason of unsuccessful therapy. The rationale of this study is to explore whether selenium nanoparticles (nano-Se) can overcome this resistance obstacle of DOX nanoparticles (nano-DOX) in these cancerous cells. Nano-Se and nano-DOX were manufactured and characterized using electron microscopy and Malvern ZetaSizer, applied separately or in the form of combinatorial regimen against human breast cancer cells (MCF7 and MDA-MB-231) and human colorectal cancer cells (HCT 116 and Caco-2). Cytotoxicity, early/late apoptosis, necrosis, cellular zinc, glucose uptake, and redox status were assessed after applying different nano-treatments versus their free counterparts. Nano-DOX induces cytotoxicity in MCF7 and Caco-2 more than MDA-MB-231 and HCT 116 cancerous cells. In addition, nano-DOX plus nano-Se diminish MCF7 and Caco-2 chemoresistance higher than MDA-MB-231 and HCT 116 cancerous cells. Moreover, Se and DOX nano-platforms inhibit glucose uptake. Furthermore, nano-DOX increases nitric oxide (NO) and malondialdehyde (MDA) in cancer cells’ media, while nano-DOX combination with nano-Se rebalances the redox status with zinc augmentation. We reported that Caco-2 cancer cells are more sensitive than HCT 116 cancer cells to nano-DOX and nano-Se. Nano-DOX plus nano-Se induces cytotoxicity-mediated late apoptosis in Caco-2 more than HCT 116 cell lines. This de novo strategy could have great power to overcome the problem of DOX resistance during colon cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kotepui M (2016) Diet and risk of breast cancer. Contemp Oncol (Pozn) 20(1):13–19

    CAS  Google Scholar 

  2. Smith L, Watson MB, O’Kane SL et al (2006) The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Mol Cancer Ther 5(5):2115–2120

    Article  CAS  PubMed  Google Scholar 

  3. Khaleel SA, Al-Abd SM, Ali AA, Abdel-Naim AB (2016) Didox and resveratrol sensitize colorectal cancer cells to doxorubicin via activating apoptosis and ameliorating P-glycoprotein activity. Sci Rep 6:36855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xue X, Liang XJ (2012) Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin J Cancer 31:100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zoheir KMA, Abd-Rabou AA, Harisa GI et al (2015) Gene expression of IQGAPs and Ras families in an experimental mouse model for hepatocellular carcinoma: a mechanistic study of cancer progression. Int J Clin Exp Pathol 8(8):8821–8831

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lehne G (2000) P-glycoprotein as a drug target in the treatment of multidrug resistant cancer. Curr Drug Targets 1(1):85–99

    Article  CAS  PubMed  Google Scholar 

  7. Huang CY, Yu LCH (2015) Pathophysiological mechanisms of death resistance in colorectal carcinoma. World J Gastroenterol 21(41):11777–11792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohajeri M, Sahebkar A (2018) Protective effects of curcumin against doxorubicin-induced toxicity and resistance: a review. Crit Rev Oncol Hematol 122:30–51

    Article  PubMed  Google Scholar 

  9. Księżakowska-Łakoma K, Żyła M, Wilczyński JR (2014) Mitochondrial dysfunction in cancer. Prz Menopauzalny 13(2):136–144

    PubMed  PubMed Central  Google Scholar 

  10. Abd-Rabou AA (2017) Calcium, a cell cycle commander, drives colon cancer cell diffpoptosis. Indian J Clin Biochem 23(1):9–18

    Article  CAS  Google Scholar 

  11. Fernandes AP, Gandin V (2015) Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta 1850(8):1642–1660

    Article  CAS  PubMed  Google Scholar 

  12. Sanmartín C, Plano D, Sharma AK, Palop JA (2012) Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy. Int J Mol Sci 13(8):9649–9672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta S, Jaworska-Bieniek K, Lubinski J, Jakubowska A (2013) Can selenium be a modifier of cancer risk in CHEK2 mutation carriers? Mutagenesis 28(6):625–629

    Article  CAS  PubMed  Google Scholar 

  14. Li S, Zhou Y, Wang R, Zhang H, Dong Y, Ip C (2007) Selenium sensitizes MCF-7 breast cancer cells to doxorubicin-induced apoptosis through modulation of phospho-Akt and its downstream substrates. Mol Cancer Ther 6:1031–1038

    Article  CAS  PubMed  Google Scholar 

  15. Yu B, Li X, Zheng W, Feng Y, Wong YS, Chen T (2014) pH-responsive cancer-targeted selenium nanoparticles: a transformable drug carrier with enhanced theranostic effects. J Mater Chem B 2:5409–5418

    Article  CAS  PubMed  Google Scholar 

  16. Tran PA, Sarin L, Hurt RH, Webster TJ (2010) Differential effects of nanoselenium doping on healthy and cancerous osteoblasts in coculture on titanium. Int J Nanomedicine 5:351–358

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng S, Li X, Zhang Y, Xie Q, Wong YS, Zheng W, Chen T (2012) PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction. Int J Nanomedicine 7:3939–3949

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Abd-Rabou AA, Ahmed HH (2017) CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: a novel approach for induction of apoptosis in HepG2 cell line. Adv Med Sci 62(2):357–367

    Article  PubMed  Google Scholar 

  19. Shalby AB, Abd-Rabou AA, Ahmed HH (2017) Nano-se crosstalks with nano-DOX/FU to selectively hack hepatic cancer cells and spare normal cells healthy: a mechanism-based study. J Appl Pharm Sci 7(8):003–012

    CAS  Google Scholar 

  20. Abd-Rabou AA, Bharali DJ, Mousa SA (2018) Taribavirin and 5-flurouracil-loaded pegylated-lipid nanoparticle synthesis, p38 docking, and antiproliferative effects on MCF-7 breast cancer. Pharm Res 35:76

    Article  CAS  PubMed  Google Scholar 

  21. Abd-Rabou AA, Zoheir KMA, Kishta MS, Shalby AB, Ezzo MI (2016) Nano-micelle of Moringa oleifera seed oil triggers mitochondrial cancer cell apoptosis. Asian Pac J Cancer Prev 17(11):4929–4933

    PubMed  PubMed Central  Google Scholar 

  22. Abd-Rabou AA, Shalby AB, Ahmed HH (2018) Selenium nanoparticles induce the chemo-sensitivity of fluorouracil nanoparticles in breast and colon cancer cells. Biol Trace Elem Res 187:80–91. https://doi.org/10.1007/s12011-018-1360-8

    Article  CAS  PubMed  Google Scholar 

  23. Zhang JS, Gao XY, Zhang LD, Bao YP (2001) Biological effects of a nano red elemental selenium. Biofactors 15(1):27–38

    Article  PubMed  Google Scholar 

  24. Ahmed HH, Aglan HA, Mabrouk M, Abd-Rabou AA, Beherei HH (2019) Enhanced mesenchymal stem cell proliferation through complexation of selenium/titanium nanocomposites. J Mater Sci Mater Med 30:24

    Article  CAS  PubMed  Google Scholar 

  25. Parveen S, Sahoo SK (2011) Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol 670:372–383

    Article  CAS  PubMed  Google Scholar 

  26. van Meerloo J, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: the MTT assay. Methods Mol Biol 731:237–245

    Article  CAS  PubMed  Google Scholar 

  27. Li S, Zhou Y, Dong Y, IP C (2007) Doxorubicin and selenium cooperatively induce Fas signaling in the absence of Fas/Fas ligand interaction. Anticancer Res 27:3075–3082

    CAS  PubMed  Google Scholar 

  28. Wu Y, Zu K, Warren MA, Wallace PK, Ip C (2006) Delineating the mechanism by which selenium deactivates Akt in prostate cancer cells. Mol Cancer Ther 5:246–252

    Article  CAS  PubMed  Google Scholar 

  29. Zu K, Bihani T, Lin A, Park YM, Mori K, Ip C (2006) Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells. Oncogene 25:546–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cao S, Durrani FA, Rustum YM (2004) Selective modulation of the therapeutic efficacy of anticancer drugs by selenium containing compounds against human tumor xenografts. Clin Cancer Res 10:2561–2569

    Article  CAS  PubMed  Google Scholar 

  31. Ahmed HH, Galal AF, Shalby AB, Abd-Rabou AA, Mehaya FM (2018) Improving anti-cancer potentiality and bioavailability of gallic acid by designing polymeric nanocomposite formulation. Asian Pac J Cancer Prev 19(11):3137–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu Y, Zhang H, Dong Y, Park YM, Ip C (2005) Endoplasmic reticulum stress signal mediators are targets of selenium action. Cancer Res 65:9073–9079

    Article  CAS  PubMed  Google Scholar 

  33. Ghadi FE, Ghara AR, Bhattacharyya S, Dhawan DK (2009) Selenium as a chemopreventive agent in experimentally induced colon carcinogenesis. World J Gastrointest Oncol 1(1):74–81

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yamanoshita O, Ichihara S, Hama H, Ichihara G, Chiba M, Kamijima M, Takeda I, Nakajima T (2007) Chemopreventive effect of selenium-enriched Japanese radish sprout against breast cancer induced by 7,12-dimethylbenz[a]anthracene in rats. Tohoku J Exp Med 212(2):191–198

    Article  PubMed  Google Scholar 

  35. Dong Y, Ganther HE, Stewart C, Ip C (2002) Identification of molecular targets associated with selenium-induced growth inhibition in human breast cells using cDNA microarrays. Cancer Res 62(3):708–714

    CAS  PubMed  Google Scholar 

  36. Sanmartín C, Plano D, Palop JA (2008) Selenium compounds and apoptotic modulation: a new perspective in cancer therapy. Mini-Rev Med Chem 8(10):1020–1031

    Article  PubMed  Google Scholar 

  37. Ahmed HH, Khalil WK, Hamza AH (2014) Molecular mechanisms of nano-selenium in mitigating hepatocellular carcinoma induced by N-nitrosodiethylamine (NDEA) in rats. Toxicol Mech Methods 24(8):593–602

    Article  CAS  PubMed  Google Scholar 

  38. Ruseva B, Atanasova M, Tsvetkova R, Betova T, Mollova M, Alexandrova M, Laleva P, Dimitrova A (2015) Effect of selenium supplementation on redox status of the aortic wall in young spontaneously hypertensive rats. Oxidative Med Cell Longev 2015:10 https://doi.org/10.1155/2015/609053

  39. Yeo JK, Cha SD, Cho CH, Kim SP, Cho JW, Baek WK, Suh MH, Kwon TK, Park JW, Suh SI (2002) Se-methylselenocysteine induces apoptosis through caspase activation and Bax cleavage mediated by calpain in SKOV-3 ovarian cancer cells. Cancer Lett 182(1):83–92

    Article  CAS  PubMed  Google Scholar 

  40. Christensen MJ, Nartey ET, Hada AL, Legg RL, Barzee BR (2007) High selenium reduces NF-kappaB-regulated gene expression in uninduced human prostate cancer cells. Nutr Cancer 58(2):197–204

    Article  CAS  PubMed  Google Scholar 

  41. Nadiminty N, Gao AC (2008) Mechanisms of selenium chemoprevention and therapy in prostate cancer. Mol Nutr Food Res 52(11):1247–1260

    Article  CAS  PubMed  Google Scholar 

  42. Saifo MS, Rempinski DR Jr, Rustum YM, Azrak RG (2010) Targeting the oncogenic protein beta-catenin to enhance chemotherapy outcome against solid human cancers. Mol Cancer 9:310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Favaro E, Bensaad K, Chong MG, Tennant DA, Ferguson DJ, Snell C, Steers G, Turley H, Li JL, Gunther UL, Buffa FM, McIntyre A, Harris AL (2012) Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab 16:751–764

    Article  CAS  PubMed  Google Scholar 

  44. Jackson MI, Combs GF (2008) Selenium and anticarcinogenesis: underlying mechanisms. Curr Opin Clin Nutr Metab Care 11:718–726

    Article  CAS  PubMed  Google Scholar 

  45. Xiao H, Jiang Y, Qi Y, Zhou X, Gong C, Huang C, Li M (2012) Effects of selenium and zinc on the proliferation of human esophageal cancer cell line studied by serophysiology. Wei Sheng Yan Jiu 41(2):185–190

    CAS  PubMed  Google Scholar 

  46. Yu RA, Xia T, Wang AG, Chen XM (2006) Effects of selenium and zinc on renal oxidative stress and apoptosis induced by fluoride in rats. Biomed Environ Sci 19(6):439–444

    CAS  PubMed  Google Scholar 

  47. Liu T, Zeng L, Jiang W, Fu Y, Zheng W, Chen T (2015) Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine 11(4):947–958

    Article  CAS  PubMed  Google Scholar 

  48. Jia X, Liu Q, Zou S, Xu X, Zhang L (2015) Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity. Carbohydr Polym 117:434–442

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors have made a significant contribution to the article and share the responsibility of the manuscript content and findings. All authors have read and approved the original and any revised version of the article that is submitted.

Corresponding author

Correspondence to Ahmed A. Abd-Rabou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

The manuscript has not been previously published and is not under consideration elsewhere.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Rabou, A.A., Ahmed, H.H. & Shalby, A.B. Selenium Overcomes Doxorubicin Resistance in Their Nano-platforms Against Breast and Colon Cancers. Biol Trace Elem Res 193, 377–389 (2020). https://doi.org/10.1007/s12011-019-01730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01730-6

Keywords

Navigation