Skip to main content
Log in

The Impact of Maternal Overweight on Hair Essential Trace Element and Mineral Content in Pregnant Women and Their Children

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate hair essential trace elements and mineral levels in 105 pregnant normal-weight (control) and 55 overweight and obese women in the third trimester of pregnancy, as well as in their children at the age of 9 months. The hair essential trace elements and mineral levels were assessed using inductively coupled plasma mass-spectrometry. Overweight pregnant women had significantly reduced Cr (− 24%; p = 0.047) and Zn (− 13%; p = 0.008) content, as well as elevated hair Na and K levels as compared to the controls. Children from overweight and obese mothers had lower hair Mo (− 18%; p = 0.017), Se (− 8%; p = 0.043), and V (− 24%; p = 0.028) levels, as well as elevated Sr content (19%; p = 0.025). Correlation analysis revealed a significant relationship between maternal and child hair levels of Co (r = 0.170; p = 0.038), Cu (r = 0.513; p < 0.001), Mn (r = 0.240; p = 0.003), and Na (r = 0.181; p = 0.027) in the whole sample. Pre-pregnancy maternal body mass index (BMI) positively correlated with maternal hair K (r = 0.336; p < 0.001) and Na (r = 0.212; p = 0.008) and negatively correlated with V (r = − 0.204; p = 0.011) and Zn (r = − 0.162; p = 0.045) levels. The results indicate that impaired trace element and mineral metabolism may play a role in the link between maternal obesity, complications of pregnancy and child’s postnatal development. Hypothetically, dietary improvement may be used as a tool to reduce these risks. However, further experimental and clinical studies are required to investigate the relationship between obesity and trace element metabolism in pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamaguchi S, Miura C, Kikuchi K, Celino FT, Agusa T, Tanabe S, Miura T (2009) Zinc is an essential trace element for spermatogenesis. Proc Natl Acad Sci U S A 106(26):10859–10864. https://doi.org/10.1073/pnas.0900602106

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ahsan U, Kamran Z, Raza I, Ahmad S, Babar W, Riaz MH, Iqbal Z (2014) Role of selenium in male reproduction—a review. Anim Reprod Sci 146(1–2):55–62. https://doi.org/10.1016/j.anireprosci.2014.01.009

    Article  PubMed  CAS  Google Scholar 

  3. Kontic-Vucinic O, Sulovic N, Radunovic N (2006) Micronutrients in women's reproductive health: II minerals and trace elements. Int J Fertil Womens Med 51(3):116–124

    PubMed  CAS  Google Scholar 

  4. Mistry HD, Pipkin FB, Redman CW, Poston L (2012) Selenium in reproductive health. Am J Obstet Gynecol 206(1):21–30. https://doi.org/10.1016/j.ajog.2011.07.034

    Article  PubMed  CAS  Google Scholar 

  5. Michos C, Kalfakakou V, Karkabounas S, Kiortsis D, Evangelou A (2010) Changes in copper and zinc plasma concentrations during the normal menstrual cycle in women. Gynecol Endocrinol 26(4):250–255. https://doi.org/10.3109/09513590903247857

    Article  PubMed  CAS  Google Scholar 

  6. Ha EJ, Smith AM (2003) Plasma selenium and plasma and erythrocyte glutathione peroxidase activity increase with estrogen during the menstrual cycle. J Am Coll Nutr 22(1):43–51. https://doi.org/10.1080/07315724.2003.10719274

    Article  PubMed  CAS  Google Scholar 

  7. Chakraborty P, Ghosh S, Goswami SK, Kabir SN, Chakravarty B, Jana K (2013) Altered trace mineral milieu might play an aetiological role in the pathogenesis of polycystic ovary syndrome. Biol Trace Elem Res 152(1):9–15. https://doi.org/10.1007/s12011-012-9592-5

    Article  PubMed  CAS  Google Scholar 

  8. Wu G, Imhoff-Kunsch B, Girard AW (2012) Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr Perinat Epidemiol 26:4–26. https://doi.org/10.1111/j.1365-3016.2012.01291.x

    Article  PubMed  Google Scholar 

  9. Spencer BH, Vanderlelie JJ, Perkins AV (2015) Essentiality of trace element micronutrition in human pregnancy: a systematic review. J Preg Child Health 2(157):1–7. https://doi.org/10.4172/2376-127X.1000157

    Article  Google Scholar 

  10. Pieczyńska J, Grajeta H (2015) The role of selenium in human conception and pregnancy. J Trace Elem Med Biol 29:31–38. https://doi.org/10.1016/j.jtemb.2014.07.003

    Article  PubMed  CAS  Google Scholar 

  11. Mariath AB, Bergamaschi DP, Rondó PH, Ana CAT, de FragasHinnig P, Abbade JF, Diniz SG (2011) The possible role of selenium status in adverse pregnancy outcomes. Br J Nutr 105(10):1418–1428. https://doi.org/10.1017/S0007114510005866

    Article  PubMed  CAS  Google Scholar 

  12. Hawkes WC, Alkan Z, Lang K, King JC (2004) Plasma selenium decrease during pregnancy is associated with glucose intolerance. Biol Trace Elem Res 100(1):19–29

    Article  CAS  Google Scholar 

  13. Rayman MP, Bode P, Redman CW (2003) Low selenium status is associated with the occurrence of the pregnancy disease preeclampsia in women from the United Kingdom. Am J Obstet Gynecol 189(5):1343–1349

    Article  CAS  Google Scholar 

  14. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39(3):112–120. https://doi.org/10.1016/j.tibs.2013.12.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kantola M, Purkunen R, Kröger P, Tooming A, Juravskaja J, Pasanen M, Vartiainen T (2004) Selenium in pregnancy: is selenium an active defective ion against environmental chemical stress? Environ Res 96(1):51–61

    Article  CAS  Google Scholar 

  16. Uriu-Adams JY, Keen CL (2010) Zinc and reproduction: effects of zinc deficiency on prenatal and early postnatal development. Birth Defects Res B Dev Reprod Toxicol 89(4):313–325. https://doi.org/10.1002/bdrb.20264

    Article  PubMed  CAS  Google Scholar 

  17. Scheplyagina LA (2005) Impact of the mother’s zinc deficiency on the woman’s and newborn's health status. J Trace Elem Med Biol 19(1):29–35

    Article  CAS  Google Scholar 

  18. Aydemir F, Çavdar AO, Söylemez F, Cengiz B (2003) Plasma zinc levels during pregnancy and its relationship to maternal and neonatal characteristics. Biol Trace Elem Res 91(3):193–202. https://doi.org/10.1385/BTER:91:3:193

    Article  PubMed  CAS  Google Scholar 

  19. Ota E, Mori R, Middleton P, Tobe Gai R, Mahomed K, Miyazaki C, Bhutta ZA (2015) Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst Rev 2. https://doi.org/10.1002/14651858.CD000230.pub5

  20. Pathak P, Kapil U (2004) Role of trace elements zinc, copper and magnesium during pregnancy and its outcome. Indian J Pediatr 71(11):1003–1005

    Article  Google Scholar 

  21. Cao C, O'brien KO (2013) Pregnancy and iron homeostasis: an update. Nutr Rev 71(1):35–51. https://doi.org/10.1111/j.1753-4887.2012.00550.x

    Article  PubMed  Google Scholar 

  22. Kovacs CS (2011) Calcium and bone metabolism disorders during pregnancy and lactation. Endocrinol Metab Clin 40(4):795–826. https://doi.org/10.1016/j.ecl.2011.08.002

    Article  CAS  Google Scholar 

  23. Skalny AV, Tinkov AA, Bohan TG, Shabalovskaya MB, Terekhina O, Leshchinskaia SB, Kovas Y (2018) Toxicological and nutritional status of trace elements in hair of women with in vitro fertilization (IVF) pregnancy and their 9-month-old children. Reprod Toxicol 82:50–56. https://doi.org/10.1016/j.reprotox.2018.10.004

    Article  PubMed  CAS  Google Scholar 

  24. Al-Jameil N, Tabassum H, Ali MN, Qadeer MA, Khan FA, Al-Rashed M (2017) Correlation between serum trace elements and risk of preeclampsia: a case controlled study in Riyadh, Saudi Arabia. Saudi J Biol Sci 24(6):1142–1148. https://doi.org/10.1016/j.sjbs.2015.02.009

    Article  PubMed  CAS  Google Scholar 

  25. Shen PJ, Gong B, Xu FY, Luo Y, Zhou B, Wang C (2015) Four trace elements in pregnant women and their relationships with adverse pregnancy outcomes. Eur Rev Med Pharmacol Sci 19(24):4690–4697

    PubMed  Google Scholar 

  26. Etebary S, Nikseresht S, Sadeghipour HR, Zarrindast MR (2010) Postpartum depression and role of serum trace elements. Iran J Psychiatry 5(2):40–46

    PubMed  PubMed Central  Google Scholar 

  27. Sebire NJ, Jolly M, Harris JP, Wadsworth J, Joffe M, Beard RW, Robinson S (2001) Maternal obesity and pregnancy outcome: a study of 287 213 pregnancies in London. Int J Obes 25(8):1175–1182

    Article  CAS  Google Scholar 

  28. Kovo M, Zion-Saukhanov E, Schreiber L, Mevorach N, Divon M, Ben-Haroush A, Bar J (2015) The effect of maternal obesity on pregnancy outcome in correlation with placental pathology. Reprod Sci 22(12):1643–1648. https://doi.org/10.1177/1933719115592712

    Article  PubMed  CAS  Google Scholar 

  29. Nikonorov AA, Skalnaya MG, Tinkov AA, Skalny AV (2015) Mutual interaction between iron homeostasis and obesity pathogenesis. J Trace Elem Med Biol 30:207–214. https://doi.org/10.1016/j.jtemb.2014.05.005

    Article  PubMed  CAS  Google Scholar 

  30. Olechnowicz J, Tinkov A, Skalny A, Suliburska J (2018) Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci 68:1–13. https://doi.org/10.1007/s12576-017-0571-7

    Article  CAS  Google Scholar 

  31. Nielsen FH (2010) Magnesium, inflammation, and obesity in chronic disease. Nutr Rev 68(6):333–340. https://doi.org/10.1111/j.1753-4887.2010.00293.x

    Article  PubMed  Google Scholar 

  32. Fatani SH, Saleh SA, Adly HM, Abdulkhaliq AA (2016) Trace element alterations in the hair of diabetic and obese women. Biol Trace Elem Res 174(1):32–39. https://doi.org/10.1007/s12011-016-0691-6

    Article  PubMed  CAS  Google Scholar 

  33. Skalnaya MG, Skalny AV, Grabeklis AR, Serebryansky EP, Demidov VA, Tinkov AA (2018) Hair trace elements in overweight and obese adults in association with metabolic parameters. Biol Trace Elem Res 186(1):12–20. https://doi.org/10.1007/s12011-018-1282-5

    Article  PubMed  CAS  Google Scholar 

  34. Yerlikaya FH, Toker A, Arıbaş A (2013) Serum trace elements in obese women with or without diabetes. Indian J Med Res 137(2):339–345. https://doi.org/10.1186/1824-7288-40-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhang H, Yan C, Yang Z, Zhang W, Niu Y, Li X, Su Q (2017) Alterations of serum trace elements in patients with type 2 diabetes. J Trace Elem Med Biol 40:91–96. https://doi.org/10.1016/j.jtemb.2016

    Article  PubMed  CAS  Google Scholar 

  36. Błażewicz A, Klatka M, Astel A, Partyka M, Kocjan R (2013) Differences in trace metal concentrations (Co, Cu, Fe, Mn, Zn, Cd, and Ni) in whole blood, plasma, and urine of obese and nonobese children. Biol Trace Elem Res 155(2):190–200. https://doi.org/10.1007/s12011-013-9783-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kocyłowski R, Grzesiak M, Gaj Z, Lorenc W, Bakinowska E, Barałkiewicz D, Suliburska J (2018) Evaluation of essential and toxic elements in amniotic fluid and maternal serum at birth. Biol Trace Elem Res 1–10. https://doi.org/10.1007/s12011-018-1471-2

    Article  CAS  Google Scholar 

  38. Ranta JK, Raatikainen K, Romppanen J, Pulkki K, Heinonen S (2011) Decreased PAPP-A is associated with preeclampsia, premature delivery and small for gestational age infants but not with placental abruption. Eur J Obstet Gynecol Reprod Biol 157(1):48–52. https://doi.org/10.1016/j.ejogrb.2011.03.004

    Article  PubMed  CAS  Google Scholar 

  39. Korevaar TI, Steegers EA, Chaker L, Medici M, Jaddoe VW, Visser TJ, Peeters RP (2016) The risk of preeclampsia according to high thyroid function in pregnancy differs by hCG concentration. J Clin Endocrinol Metab 101(12):5037–5043. https://doi.org/10.1210/jc.2016-2397

    Article  PubMed  CAS  Google Scholar 

  40. Johns J, Jauniaux E (2006) Threatened miscarriage as a predictor of obstetric outcome. Obstet Gynecol 107(4):845–850

    Article  Google Scholar 

  41. LeBlanc A, Dumas P, Lefebvre L (1999) Trace element content of commercial shampoos: impact on trace element levels in hair. Sci Total Environ 229(1–2):121–124

    Article  CAS  Google Scholar 

  42. Eskild A, Fedorcsak P, Mørkrid L, Tanbo TG (2012) Maternal body mass index and serum concentrations of human chorionic gonadotropin in very early pregnancy. Fertil Steril 98(4):905–910. https://doi.org/10.1016/j.fertnstert.2012.06.011

    Article  PubMed  CAS  Google Scholar 

  43. Połeć A, Fedorcsák P, Eskild A, Tanbo TG (2014) The interplay of human chorionic gonadotropin (hCG) with basic fibroblast growth factor and adipokines on angiogenesis in vitro. Placenta 35(4):249–253. https://doi.org/10.1016/j.placenta.2014.02.002

    Article  PubMed  CAS  Google Scholar 

  44. Ozturk P, Kurutas E, Ataseven A, Dokur N, Gumusalan Y, Gorur A, Inaloz S (2014) BMI and levels of zinc, copper in hair, serum and urine of Turkish male patients with androgenetic alopecia. J Trace Elem Med Biol 28(3):266–270. https://doi.org/10.1016/j.jtemb.2014.03.003

    Article  PubMed  CAS  Google Scholar 

  45. Konukoglu D, Turhan MS, Ercan M, Serin O (2004) Relationship between plasma leptin and zinc levels and the effect of insulin and oxidative stress on leptin levels in obese diabetic patients. J Nutr Biochem 15(12):757–760

    Article  CAS  Google Scholar 

  46. Ugwuja EI, Akubugwo EI, Obidoa O, Ibiam AU (2010) Maternal BMI during pregnancy: effect on trace elements status and pregnancy outcomes. Int J Environ Health Res 3(2):71–78. https://doi.org/10.4314/ijhr.v3i2.70270

    Article  Google Scholar 

  47. Ferro F, Lima VB, Soares N, Cozzolino S, Marreiro D (2011) Biomarkers of metabolic syndrome and its relationship with the zinc nutritional status in obese women. Nutr Hosp 26(3):650–654. https://doi.org/10.1590/S0212-16112011000300032

    Article  CAS  Google Scholar 

  48. Tinkov AA, Popova EV, Gatiatulina ER, Skalnaya AA, Yakovenko EN, Alchinova IB, Nikonorov AA (2016) Decreased adipose tissue zinc content is associated with metabolic parameters in high fat fed Wistar rats. Acta Sci Pol Technol Aliment 15(1):99–105. https://doi.org/10.17306/J.AFS.2016.1.10

    Article  PubMed  CAS  Google Scholar 

  49. Capdor J, Foster M, Petocz P, Samman S (2013) Zinc and glycemic control: a meta-analysis of randomised placebo controlled supplementation trials in humans. J Trace Elem Med Biol 27(2):137–142. https://doi.org/10.1016/j.jtemb.2012.08.001

    Article  PubMed  CAS  Google Scholar 

  50. Donangelo CM, King JC (2012) Maternal zinc intakes and homeostatic adjustments during pregnancy and lactation. Nutrients 4(7):782–798. https://doi.org/10.3390/nu4070782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wilson R, Grieger J, Bianco-Miotto T, Roberts C (2016) Association between maternal zinc status, dietary zinc intake and pregnancy complications: a systematic review. Nutrients 8(10):641. https://doi.org/10.3390/nu8100641

    Article  PubMed Central  CAS  Google Scholar 

  52. Wang H, Hu YF, Hao JH, Chen YH, Su PY, Wang Y, Tao FB (2015) Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: a population-based birth cohort study. Sci Rep 5:11262. https://doi.org/10.1038/srep11262

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dey AC, Shahidullah M, Mannan MA, Noor MK, Saha L, Rahman SA (2010) Maternal and neonatal serum zinc level and its relationship with neural tube defects. J Health Popul Nutr 28(4):343. https://doi.org/10.3329/jhpn.v28i4.6040

    Article  PubMed  PubMed Central  Google Scholar 

  54. Aimo L, Mackenzie GG, Keenan AH, Oteiza PI (2010) Gestational zinc deficiency affects the regulation of transcription factors AP-1, NF-κB and NFAT in fetal brain. J Nutr Biochem 21(11):1069–1075. https://doi.org/10.1016/j.jnutbio.2009.09.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Chaffee BW, King JC (2012) Effect of zinc supplementation on pregnancy and infant outcomes: a systematic review. Paediatr Perinat Epidemiol 26:118–137. https://doi.org/10.1111/j.1365-3016.2012.01289.x

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lau FC, Bagchi M, Sen CK, Bagchi D (2008) Nutrigenomic basis of beneficial effects of chromium (III) on obesity and diabetes. Mol Cell Biochem 317(1–2):1–10. https://doi.org/10.1007/s11010-008-9744-2

    Article  PubMed  CAS  Google Scholar 

  57. Tinkov AA, Popova EV, Polyakova VS, Kwan OV, Skalny AV, Nikonorov AA (2015) Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats. J Trace Elem Med Biol 29:176–181. https://doi.org/10.1016/j.jtemb.2014.07.006

    Article  PubMed  CAS  Google Scholar 

  58. Sundararaman PG, Sridhar GR, Sujatha V, Anita V (2012) Serum chromium levels in gestational diabetes mellitus. Indian J Endocrinol Metab 16(1):70–73. https://doi.org/10.4103/2230-8210.94266

    Article  CAS  Google Scholar 

  59. Morris BW, Samaniego S, Fraser R, MacNeil S (2000) Increased chromium excretion in pregnancy is associated with insulin resistance. J Trace Elem Exp Med 13(4):389–396. https://doi.org/10.1002/1520-670X(2000)13:4<389::AID-JTRA7>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  60. Padmavathi IJ, Rao KR, Venu L, Ganeshan M, Kumar KA, Rao CN, Raghunath M (2010) Chronic maternal dietary chromium restriction modulates visceral adiposity: probable underlying mechanisms. Diabetes 59(1):98–104. https://doi.org/10.2337/db09-0779

    Article  PubMed  CAS  Google Scholar 

  61. Zhang Q, Sun X, Xiao X, Zheng J, Li M, Yu M, Wang X (2017) Dietary chromium restriction of pregnant mice changes the methylation status of hepatic genes involved with insulin signaling in adult male offspring. PLoS One 12(1):e0169889. https://doi.org/10.1371/journal.pone.0169889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Skalnaya MG, Demidov VA (2007) Hair trace element contents in women with obesity and type 2 diabetes. J Trace Elem Med Biol 21:59–61

    Article  CAS  Google Scholar 

  63. Tinkov AA, Popova EV, Polyakova VS, Skalny AV, Nikonorov AA (2014) Effect of high fat diet on macroelement content in hair and adipose tissue of Wistar rats. Trace Elem Electroly 31(4):156–159. https://doi.org/10.5414/TEX01351

    Article  Google Scholar 

  64. Ehrhart-Bornstein M, Arakelyan K, Krug AW, Scherbaum WA, Bornstein SR (2004) Fat cells may be the obesity–hypertension link: human adipogenic factors stimulate aldosterone secretion from adrenocortical cells. Endocr Res 30(4):865–870

    Article  CAS  Google Scholar 

  65. Lee SK, Kim MK (2016) Relationship of sodium intake with obesity among Korean children and adolescents: Korea National Health and Nutrition Examination Survey. Br J Nutr 115(5):834–841. https://doi.org/10.1017/S0007114515005152

    Article  PubMed  CAS  Google Scholar 

  66. Rafie N, Hamedani SG, Mohammadifard N, Feizi A, Safavi SM (2018) 24-h urinary sodium to potassium ratio and its association with obesity in children and adolescents. Eur J Nutr 1:7. https://doi.org/10.1007/s00394-018-1645-x

    Article  CAS  Google Scholar 

  67. Jones HN, Woollett LA, Barbour N, Prasad PD, Powell TL, Jansson T (2009) High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J 23(1):271–278. https://doi.org/10.1096/fj.08-116889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lomas-Soria C, Reyes-Castro LA, Rodríguez-González GL, Ibáñez CA, Bautista CJ, Cox LA, Zambrano E (2018) Maternal obesity has sex-dependent effects on insulin, glucose and lipid metabolism and the liver transcriptome in young adult rat offspring. J Physiol 596(19):4611–4628. https://doi.org/10.1113/JP276372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Al-Saleh E, Nandakumaran M, Al-Harmi J, Sadan T, Al-Enezi H (2006) Maternal-fetal status of copper, iron, molybdenum, selenium, and zinc in obese pregnant women in late gestation. Biol Trace Elem Res 113(2):113–123. https://doi.org/10.1385/BTER:113:2:113

    Article  PubMed  CAS  Google Scholar 

  70. Suliburska J, Kocyłowski R, Komorowicz I, Grzesiak M, Bogdański P, Barałkiewicz D (2016) Concentrations of mineral in amniotic fluid and their relations to selected maternal and fetal parameters. Biol Trace Elem Res 172(1):37–45. https://doi.org/10.1007/s12011-015-0557-3

    Article  PubMed  CAS  Google Scholar 

  71. Pessoa JC, Etcheverry S, Gambino D (2015) Vanadium compounds in medicine. Coord Chem Rev 301:24–48. https://doi.org/10.1016/j.ccr.2014.12.002

    Article  CAS  Google Scholar 

  72. Tascilar ME, Ozgen IT, Abaci A, Serdar M, Aykut O (2011) Trace elements in obese Turkish children. Biol Trace Elem Res 143(1):188–195. https://doi.org/10.1007/s12011-010-8878-8

    Article  PubMed  CAS  Google Scholar 

  73. Nielsen SP (2004) The biological role of strontium. Bone 35(3):583–588

    Article  CAS  Google Scholar 

  74. Schomburg L (2012) Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat Rev Endocrinol 8(3):160–171. https://doi.org/10.1038/nrendo.2011.174

    Article  CAS  Google Scholar 

  75. Wiernsperger N, Rapin J (2010) Trace elements in glucometabolic disorders: an update. Diabetol Metab Syndr 2(1):70. https://doi.org/10.1186/1758-5996-2-70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhou J, Huang K, Lei XG (2013) Selenium and diabetes—evidence from animal studies. Free Radic Biol Med 65:1548–1556. https://doi.org/10.1016/j.freeradbiomed.2013.07.012

    Article  PubMed  CAS  Google Scholar 

  77. Gupta UC, Srivastava PC, Gupta SC (2011) Role of micronutrients: boron and molybdenum in crops and in human health and nutrition. Curr Nutr Food Sci 7(2):126–136. https://doi.org/10.2174/157340111795713807

    Article  CAS  Google Scholar 

  78. Long NM, George LA, Uthlaut AB, Smith DT, Nijland MJ, Nathanielsz PW, Ford SP (2010) Maternal obesity and increased nutrient intake before and during gestation in the ewe results in altered growth, adiposity, and glucose tolerance in adult offspring. J Anim Sci 88(11):3546–3553. https://doi.org/10.2527/jas.2010-3083

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the Tomsk State University Grant (project No. 8.1.11.2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Tinkov.

Ethics declarations

The present study was performed in agreement with the principles of the Declaration of Helsinki and its later amendments. The protocol of the study was approved by the Ethics Committee for Interdisciplinary Investigations (Tomsk State University, Russia) (project No. 8.1.11.2018). All women participated in the investigation on a voluntary basis and were informed about the objectives and procedures of the study. The women signed informed consent for their own and their children’s participation. Hair sampling procedures involving children were performed in the presence of one of the parents.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skalny, A.V., Tinkov, A.A., Bohan, T.G. et al. The Impact of Maternal Overweight on Hair Essential Trace Element and Mineral Content in Pregnant Women and Their Children. Biol Trace Elem Res 193, 64–72 (2020). https://doi.org/10.1007/s12011-019-01693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01693-8

Keywords

Navigation