Skip to main content
Log in

Dietary Supplementation with Chromium Picolinate Influences Serum Glucose and Immune Response of Brown-Egg Laying Hens

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To investigate the effect of chromium picolinate (CrPic) on egg production performance, egg quality, blood indices, and immune function of laying hens, 270 23-week-old Beijing Red brown-egg laying hens were randomly assigned to one of three treatments with six replicates of 15 birds per replicate for each treatment in a completely randomized design. Laying hens were fed a Cr-unsupplemented corn-soybean meal basal diet (control, containing 0.45 mg Cr/kg by analysis) or the basal diet supplemented with 0.4 or 0.6 mg Cr/kg from CrPic for 10 weeks. Laying hens fed diets supplemented with CrPic had a lower (P < 0.05) serum glucose (GLU) concentration and higher (P < 0.03) serum antibody titer against Newcastle disease than those fed the control diet at 33 weeks of age. However, supplemental CrPic had no effect (P > 0.05) on egg production and egg quality of brown-egg laying hens from 24 to 33 weeks of age. The results from this study indicated that supplemental CrPic decreased serum GLU and enhanced the immune function of brown-egg laying hens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schwarz K, Mertz W (1959) Chromium (III) and the glucose tolerance factor. Arch Biochem Biophys 85(1):292–295. https://doi.org/10.1016/0003-9861(59)90479-5

    Article  PubMed  CAS  Google Scholar 

  2. Jeejeebhoy KN, Chu RC, Marliss EB, Greenberg GR, Bruce-Robertson A (1977) Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parental nutrition. Am J Clin Nutr 30(4):531–538

    Article  PubMed  CAS  Google Scholar 

  3. Mertz W (1993) Chromium in human nutrition: a review. J Nutr 123(4):626–633

    Article  PubMed  CAS  Google Scholar 

  4. Vincent JB (2000) The biochemistry of chromium. J Nutr 130(4):715–718

    Article  PubMed  CAS  Google Scholar 

  5. Ohba H, Suketa Y, Okada S (1986) Enhancement of in vitro ribonucleic acid synthesis on chromium (III)-bound chromatin. J Inorg Biochem 27(3):179–189. https://doi.org/10.1016/0162-0134(86)80059-9

    Article  PubMed  CAS  Google Scholar 

  6. Mccarty MF (1991) The case for supplemental chromium and a survey of clinical studies with chromium picolinate. J Appl Nutr 43:59–66

    Google Scholar 

  7. Anderson RA (1997) Chromium as an essential nutrient for humans. Regul Toxicol Pharmacol 26(1):S35–S41. https://doi.org/10.1006/rtph.1997.1136

    Article  PubMed  CAS  Google Scholar 

  8. Hamidi O, Chamani M, Ghahri H, Sadeghi AA, Malekinejad H (2016) Effects of chromium (III) picolinate and chromium (III) picolinate nanoparticles supplementation on growth performance, organs weight and immune function in cyclic heat stressed broiler chickens. Kafkas Üniv Vet Fak Derg 22:373–380. https://doi.org/10.9775/kvfd.2015.14736

    Article  Google Scholar 

  9. Verhage AH, Cheong WK, Jeejeebhoy KN (1996) Neurologic symptoms due topossible chromium deficiency in long-term parenteral nutrition that closely mimic metronidasole-induced syndromes. JPEN J Parenter Enteral Nutr 20(2):123–127. https://doi.org/10.1177/0148607196020002123

    Article  PubMed  CAS  Google Scholar 

  10. Wongseelashote O, Daly MA, Frankel EH (2004) High insulin requirement versus high chromium requirement in patients nourished with total parenteral nutrition. Nutrition 20(3):318–320. https://doi.org/10.1016/j.nut.2003.11.001

    Article  PubMed  CAS  Google Scholar 

  11. Nielsen FH (2007) Summary: the clinical and nutritional importance of chromium—still debated after 50 years of research. In: Vincent JB (ed) The nutritional biochemistry of chromium (III). Elsevier, Amsterdam, pp 265–276. https://doi.org/10.1016/B978-044453071-4/50014-X

    Chapter  Google Scholar 

  12. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies) (2009) Safety and efficacy of chromium methionine (Availa®Cr) as feed additive for all species. EFSA J 1043(4):1–69. https://doi.org/10.2903/j.efsa.2009.1043

    Article  Google Scholar 

  13. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies) (2014) Scientific opinion on dietary reference values for chromium. EFSA J 12(10):3845. https://doi.org/10.2903/j.efsa.2014.3845

    Article  CAS  Google Scholar 

  14. Vincent JB (2015) Is the pharmacological mode of action of chromium(III) as a second messenger? Biol Trace Elem Res 166(1):7–12. https://doi.org/10.1007/s12011-015-0231-9

    Article  PubMed  CAS  Google Scholar 

  15. Lien TF, Chen SY, Wu CP, Chen CL, Hu CY (1996) Effects of chromium picolinate and chromium chloride on growth performance and serum traits of growing-finishing swine. Proc West Sect Am Soc Anim Sci 47:150–153

    Google Scholar 

  16. Li SF, Luo XG, Liu B, Shao GZ, Guo XQ, Yu SX (2001) Effect of organic chromium on egg production and immune responses in heat stressed layers. Acta Nutrimenta Sin 23:117–121

    CAS  Google Scholar 

  17. Luo X, Guo Y, Liu B, He Z, Chen J, Gao F, Yu S (1999) Effect of dietary chromium on growth, serum biochemical traits and immune responses of broiler chicks during 0-3 weeks of age. Acta Vet Zootech Sin 30:481–489

    Google Scholar 

  18. Lee DN, Wu FY, Cheng YH, Lin RS, Wu PC (2003) Effects of dietary chromium picolinate supplementation on growth performance and immune responses of broilers. Asian Aust J Anim Sci 16(2):227–233. https://doi.org/10.5713/ajas.2003.227

    Article  CAS  Google Scholar 

  19. Wang G, Luo XG, Liu B, Shao GZ, Li SF, Yu SX (2003) Effect of dietary chromium on growth, serum biochemical traits and carcass quality of heat stressed broilers. Chin J Anim Vet Sci 34:120–127

    Google Scholar 

  20. Luo XG, Wang G, Liu B, Liang LC, Li SF, Yu SX (2002) Effect of dietary chromium on immune responses in heat stressed broilers. Acta Nutrimenta Sin 24:286–291

    CAS  Google Scholar 

  21. Sahin K, Sahin N, Onderci M, Gursu F, Cikim G (2002) Optimal dietary concentration of chromium for alleviating the effect of heat stress on growth, carcass qualities, and some serum metabolites of broiler chickens. Biol Trace Elem Res 89(1):53–64. https://doi.org/10.1385/Bter:89:1:53

    Article  PubMed  CAS  Google Scholar 

  22. Lien TF, Chen SY, Shiau SP, Froman DP, Hu CY (1996) Chromium picolinate reduces laying hen serum and egg yolk cholesterol. Prof. Anim Sci 12(2):77–80. https://doi.org/10.15232/S1080-7446(15)32493-1

    Article  Google Scholar 

  23. Kim JD, Han IK, Chae BJ, Lee JH, Park JH, Yang CJ (1997) Effects of dietary chromium picolinate on performance, egg quality, serum traits and mortality rate of brown layers. Asian Australas J Anim Sci 10(1):1–7. https://doi.org/10.5713/ajas.1997.1

    Article  CAS  Google Scholar 

  24. Sahin N, Onderci M, Sahin K (2002) Effects of dietary chromium and zinc on egg production, egg quality, and some blood metabolites of laying hens reared under low ambient temperature. Biol Trace Elem Res 85(1):47–58. https://doi.org/10.1385/bter:85:1:47

    Article  PubMed  CAS  Google Scholar 

  25. Sahin K, Ozbey O, Onderci M, Cikim G, Aysondu MH (2002) Chromium supplementation can alleviate negative effects of heat stress on egg production, egg quality and some serum metabolites of laying Japanese quail. J Nutr 132(6):1265–1268

    Article  PubMed  CAS  Google Scholar 

  26. Luo XG, Li SF, Liu B, Shao GZ, Guo XQ, Yu SX (2002) Effect of dietary chromium on egg production performance, egg quality, serum biochemical traits and immune responses of heat stressed layers. Chin J Anim Vet Sci 33:313–320

    Google Scholar 

  27. Torki M, Zangeneh S, Habibian M (2014) Performance, egg quality traits, and serum metabolite concentrations of laying hens affected by dietary supplemental chromium picolinate and vitamin C under a heat-stress condition. Biol Trace Elem Res 157(2):120–129. https://doi.org/10.1007/s12011-013-9872-8

    Article  PubMed  CAS  Google Scholar 

  28. Benabdeljelil K, Jensen LS (1989) Effects of distillers dried grains with solubles and dietary magnesium, vanadium and chromium on hen performance and egg quality. Nutr Rep Int 39:451–459

    CAS  Google Scholar 

  29. Jensen LS, Maurice DV (1980) Dietary chromium and interior egg quality. Poult Sci 59(2):341–346. https://doi.org/10.3382/ps.0590341

    Article  CAS  Google Scholar 

  30. Lydic ML, McNurlan M, Bembo S, Mitchell L, Komaroff E, Gelato M (2006) Chromium picolinate improves insulin sensitivity in obese subjects with polycystic ovary syndrome. Fertil Steril 86(1):243–246. https://doi.org/10.1016/j.fertnstert.2005.11.069

    Article  PubMed  CAS  Google Scholar 

  31. NRC (1994) Nutrient requirement for poultry, 9th end. National Academies Press, Washington, DC, p 23

    Google Scholar 

  32. Huang YL, Lu L, Li SF, Luo XG, Liu B (2009) Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed a conventional corn-soybean meal diet. J Anim Sci 87(6):2038–2046. https://doi.org/10.2527/jas.2008-1212

    Article  PubMed  CAS  Google Scholar 

  33. AOAC (2000) Official methods of analysis. Association of Official Analytical Chemists. Arlinton, VA

    Google Scholar 

  34. Vuilleumier JP (1969) The ‘Roche yolk colour fan’—an instrument for measuring yolk colour. Poult Sci 48(3):767–779. https://doi.org/10.3382/ps.0480767

    Article  Google Scholar 

  35. Qin S, Lu L, Zhang X, Liao X, Zhang L, Guo Y, Luo X (2017) An optimal dietary zinc level of brown-egg laying hens fed a corn-soybean meal diet. Biol Trace Elem Res 177(2):376–383. https://doi.org/10.1007/s12011-016-0867-0

    Article  PubMed  CAS  Google Scholar 

  36. Zhu YW, Xie JJ, Li WX, Lu L, Zhang LY, Ji C, Lin X, Liu HC, Odle J, Luo XG (2015) Effects of environmental temperature and dietary manganese on egg production performance, egg quality, and some plasma biochemical traits of broiler breeders. J Anim Sci 93(7):3431–3440. https://doi.org/10.2527/jas.2015-8956

    Article  PubMed  CAS  Google Scholar 

  37. Eisen EJ, Bohren BB, McKean HE (1962) The Haugh unit as a measure of egg albumen quality. Poult Sci 41(5):1461–1468. https://doi.org/10.3382/ps.0411461

    Article  Google Scholar 

  38. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1-2):55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  PubMed  CAS  Google Scholar 

  39. Meulemans G, Carlier MC, Gonze M, Petit P (1987) Comparison of hemagglutination-inhibition, agar gel precipitin, and enzyme-linked immunosorbent assay for measuring antibodies against influenza viruses in chickens. Avian Dis 31(3):560–563. https://doi.org/10.2307/1590740

    Article  PubMed  CAS  Google Scholar 

  40. Ma W, Gu Y, Lu J, Yuan L, Zhao R (2014) Effects of chromium propionate on egg production, egg quality, plasma biochemical parameters, and egg chromium deposition in late-phase laying hens. Biol Trace Elem Res 157(2):113–119. https://doi.org/10.1007/s12011-013-9875-5

    Article  PubMed  CAS  Google Scholar 

  41. Eseceli H, Degirmencioglu N, Bilgic M (2010) The effect of inclusion of chromium yeast (Co-factor III, Alltech Inc.) and folic acid to the rations of laying hens on performance, egg quality, egg yolk cholesterol, folic acid and chromium levels. J Anim Vet Adv 9(2):384–391. https://doi.org/10.3923/javaa.2010.384.391

    Article  CAS  Google Scholar 

  42. Benabdeljelil K, Jensen LS (1990) Effectiveness of ascorbic acid and chromium in counteracting the negative effects of dietary vanadium on interior egg quality. Poult Sci 69(5):781–786. https://doi.org/10.3382/ps.0690781

    Article  PubMed  CAS  Google Scholar 

  43. Lien TF, Chen KL, Wu CP, Lu JJ (2004) Effects of supplemental copper and chromium on the serum and egg traits of laying hens. Br Poult Sci 45(4):535–539. https://doi.org/10.1080/00071660400001082

    Article  PubMed  CAS  Google Scholar 

  44. Guo Y, Luo X, Hao Z, Liu B, Chen J, Gao F, Yu S (1999) Effect of chromium on growth performance, serum biochemical traits, immune functions and carcass quality of broiler chickens. Sci Agric Sin 32:79–86

    CAS  Google Scholar 

  45. Naghieh A, Toghyani M, Gheisari AA, Saeed SE, Miranzadeh H (2010) Effect of different sources of supplemental chromium on performance and immune responses of broiler chicks. J Anim Vet Adv 9(2):354–358. https://doi.org/10.3923/javaa.2010.354.358

    Article  CAS  Google Scholar 

  46. Mirfendereski E, Jahanian R (2015) Effects of dietary organic chromium and vitamin C supplementation on performance, immune responses, blood metabolites, and stress status of laying hens subjected to high stocking density. Poult Sci 94(2):281–288. https://doi.org/10.3382/ps/peu074

    Article  PubMed  CAS  Google Scholar 

  47. Gross WB (1992) Effect of short-term exposure of chickens to corticosterone on resistance to challenge exposure with Escherichia Coli and antibody response to sheep erythrocytes. Am J Vet Res 53(3):291–293

    PubMed  CAS  Google Scholar 

  48. Ma XY, Liu SB, Lu L, Li SF, Xie JJ, Zhang LY, Zhang JH, Luo XG (2014) Relative bioavailability of iron proteinate for broilers fed a casein-dextrose diet. Poult Sci 93(3):556–563. https://doi.org/10.3382/ps.2013-03296

    Article  PubMed  CAS  Google Scholar 

  49. Tako E, Hoekenga OA, Kochian LV, Glahn RP (2013) High bioavailablilty iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus). Nutr J 12(1):3. https://doi.org/10.1186/1475-2891-12-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Brock J (1985) Transferrins. Meta 2:183–262

    Google Scholar 

  51. Noori KFP, Ebrahimzadeh SK (2012) Effects of the chromium methionine supplementation on performance, serum metabolites and carcass traits in broiler chickens. J Anim Sci Adv 2:230–235

    CAS  Google Scholar 

  52. Bakhiet AO, Elbadwi SMA (2007) Effects of dietary chromium supplementation on the performance and some serum parameters in bovans-type chicks. J Pharmacol Toxicol 2(4):402–406. https://doi.org/10.3923/jpt.2007.402.406

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Agricultural Science and Technology Innovation Program (ASTIP-IAS08; Beijing, P. R. China) and the Program of Beijing Natural Science Foundation of China (project no. 6062022; Beijing, P. R. China). The authors would like to especially thank Professor Ji Cheng in China Agriculture University, Beijing, for providing us with Beijing Red brown-egg laying hens and experimental facilities. And also, we would highly appreciate Dr. David Masters in the University of Western Australia for assisting with the English editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xugang Luo.

Ethics declarations

All experimental procedures were approved by the Animal Management Committee (in charge of animal welfare issue) of the Institute of Animal Science, Chinese Academy of Agricultural Sciences (IAS-CAAS, Beijing, China) and performed in accordance with the guidelines. Ethical approval on animal survival was given by the animal ethics committee of IAS-CAAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Sun, X., Liao, X. et al. Dietary Supplementation with Chromium Picolinate Influences Serum Glucose and Immune Response of Brown-Egg Laying Hens. Biol Trace Elem Res 185, 448–455 (2018). https://doi.org/10.1007/s12011-017-1232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1232-7

Keywords

Navigation