Skip to main content
Log in

Size-Dependent Neurotoxicity of Aluminum Oxide Particles: a Comparison Between Nano- and Micrometer Size on the Basis of Mitochondrial Oxidative Damage

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Aluminum nanoparticles (AlNPs) are among the most abundantly produced nanosized particles in the market. There is limited information about the potential harmful effects of aluminum oxide due to its particle size on human health. Considering the toxic effects of Al on brain as its target tissue, in this study, the toxicity of nanoparticles, microparticles, and ionic forms of Al on rat brain and isolated mitochondria was evaluated. Sixty male Wistar rats were divided into ten groups (six rats each), in which group I was the control, and the other groups were administered different doses of Al nanoparticles, Al microparticles (AlMP), and Al ionic forms (2, 4, and 8 mg/kg, i.p.) for 28 days. After 24 h, the animals were killed, brain tissue was separated, the mitochondrial fraction was isolated, and oxidative stress markers were measured. Also, mitochondrial function was assayed by MTT test. The results showed that all forms of Al particles induced ROS formation, lipid peroxidation, protein oxidation, glutathione depletion, mitochondrial dysfunction, and gait abnormalities in a dose-dependent manner. In addition, Al particles decreased mitochondrial membrane potential. These data indicated that oxidative stress might contribute to the toxicity effects of Al. Comparison of oxidative stress markers between all forms of Al revealed that the toxic effect of AlNP on brain tissue was substantially more than that caused by AlMP and bulk form. This study showed more neurotoxicity of AlNPs compared to other forms on brain oxidative damage that probably is due to more penetration into the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Park E-J, Lee G-H, J-h S, Cho M-H, Lee B-S, Kim Y-B, Kim J-H, Kim Y, Kim D-W (2015) Comparison of the toxicity of aluminum oxide nanorods with different aspect ratio. Arch Toxicol 89(10):1771–1782

    Article  CAS  PubMed  Google Scholar 

  2. Yan L, Zheng YB, Zhao F, Li S, Gao X, Xu B, Weiss PS, Zhao Y (2012) Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem Soc Rev 41(1):97–114

    Article  CAS  PubMed  Google Scholar 

  3. Amelia M, Lincheneau C, Silvi S, Credi A (2012) Electrochemical properties of CdSe and CdTe quantum dots. Chem Soc Rev 41(17):5728–5743

    Article  CAS  PubMed  Google Scholar 

  4. Joh DY, Kinder J, Herman LH, Ju S-Y, Segal MA, Johnson JN, Chan GK-L, Park J (2011) Single-walled carbon nanotubes as excitonic optical wires. Nat Nanotechnol 6(1):51–56

    Article  CAS  PubMed  Google Scholar 

  5. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534

    Article  CAS  PubMed  Google Scholar 

  6. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  CAS  PubMed  Google Scholar 

  7. Doudi M, Setorki M (2014) Acute effect of nano-copper on liver tissue and function in rat. Nanomedicine J 1 (5): 331-338

  8. Oesterling E, Chopra N, Gavalas V, Arzuaga X, Lim EJ, Sultana R, Butterfield DA, Bachas L, Hennig B (2008) Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol Lett 178(3):160–166

    Article  CAS  PubMed  Google Scholar 

  9. Kumar V, Gill KD (2014) Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 41:154–166

    Article  CAS  PubMed  Google Scholar 

  10. Perry CC, Keeling-Tucker T (1998) Aspects of the bioinorganic chemistry of silicon in conjunction with the biometals calcium, iron and aluminium. J Inorg Biochem 69(3):181–191

    Article  CAS  PubMed  Google Scholar 

  11. Becaria A, Campbell A, Bondy S (2002) Aluminum as a toxicant. Toxicol Ind Health 18(7):309–320

    Article  CAS  PubMed  Google Scholar 

  12. Lal B, Gupta A, Murthy R, Ali MM, Chandra S (1993) Aluminum ingestion alters behaviour and some neurochemicals in rats. Indian J Exp Biol 31(1):30–35

    CAS  PubMed  Google Scholar 

  13. Julka D, Gill K (1996) Effect of aluminum on regional brain antioxidant defense status in Wistar rats. Res Exp Med 196(1):187–194

    Article  CAS  Google Scholar 

  14. Kaur A, Joshi K, Minz RW, Gill KD (2006) Neurofilament phosphorylation and disruption: a possible mechanism of chronic aluminium toxicity in Wistar rats. Toxicology 219(1):1–10

    Article  CAS  PubMed  Google Scholar 

  15. Sánchez-Iglesias S, Soto-Otero R, Iglesias-Gonzalez J, Barciela-Alonso MC, Bermejo-Barrera P, Méndez-Álvarez E (2007) Analysis of brain regional distribution of aluminium in rats via oral and intraperitoneal administration. J Trace Elem Med Biol 21:31–34

    Article  PubMed  CAS  Google Scholar 

  16. Jack R, Rabin PL, McKinney TD (1984) Dialysis encephalopathy: a review. Int J Psychiatry Med 13(4):309–326

    Article  CAS  Google Scholar 

  17. Neri L, Hewitt D (1991) Aluminium, Alzheimer’s disease, and drinking water. Lancet 338(8763):390

    Article  CAS  PubMed  Google Scholar 

  18. Gauthier E, Fortier I, Courchesne F, Pepin P, Mortimer J, Gauvreau D (2000) Aluminum forms in drinking water and risk of Alzheimer’s disease. Environ Res 84(3):234–246

    Article  CAS  PubMed  Google Scholar 

  19. Flaten TP (2001) Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull 55(2):187–196

    Article  CAS  PubMed  Google Scholar 

  20. Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61(6):438–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations—many questions, some answers. Mutation Res/Reviews in Mutation Res 681(2):241–258

    Article  CAS  PubMed  Google Scholar 

  22. Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S (2009) Role of oxidative damage in toxicity of particulates. Free radical research

  23. Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25

    Article  CAS  Google Scholar 

  24. Niu P, Niu Q, Zhang Q, Wang L, He S, Wu T, Conti P, Di Gioacchino M, Boscolo P (2005) Aluminum impairs rat neural cell mitochondria in vitro. Int J Immunopathol Pharmacol 18(4):683–689

    Article  CAS  PubMed  Google Scholar 

  25. Kumar V, Bal A, Gill KD (2008) Impairment of mitochondrial energy metabolism in different regions of rat brain following chronic exposure to aluminium. Brain Res 1232:94–103

    Article  CAS  PubMed  Google Scholar 

  26. Kumar V, Gill KD (2009) Aluminium neurotoxicity: neurobehavioural and oxidative aspects. Arch Toxicol 83(11):965–978

    Article  CAS  PubMed  Google Scholar 

  27. Liang F-Q, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76(4):397–403

    Article  CAS  PubMed  Google Scholar 

  28. Halliwell B (1992) Reactive oxygen species and the central nervous system. In: Free radicals in the brain. Springer, pp 21–40

  29. Chaves S, Lacava L, Lacava Z, Silva O, Pelegrini F, Buske N, Gansau C, Morais P, Azevedo R (2002) Light microscopy and magnetic resonance characterization of a DMSA-coated magnetic fluid in mice. Magnetics, IEEE Transactions on 38(5):3231–3233

    Article  CAS  Google Scholar 

  30. Shaki F, Hosseini M-J, Ghazi-Khansari M, Pourahmad J (2012) Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochimica et Biophysica Acta (BBA)-General Subjects 1820(12):1940–1950

    Article  CAS  Google Scholar 

  31. Lambowitz AM (1979) [34] Preparation and analysis of mitochondrial ribosomes. Methods Enzymol 59:421–433

    Article  CAS  PubMed  Google Scholar 

  32. Mehri S, Karami HV, Hassani FV, Hosseinzadeh H (2014) Chrysin reduced acrylamide-induced neurotoxicity in both in vitro and in vivo assessments. Iran Biomed J 18(2):101

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  PubMed  Google Scholar 

  34. Gao X, Zheng CY, Yang L, Tang XC, Zhang HY (2009) Huperzine A protects isolated rat brain mitochondria against β-amyloid peptide. Free Radic Biol Med 46(11):1454–1462

    Article  CAS  PubMed  Google Scholar 

  35. Sadegh C, Schreck RP (2003) The spectroscopic determination of aqueous sulfite using Ellman’s reagent. MURJ 8:39–43

    Google Scholar 

  36. Zhang S, Fu J, Zhou Z (2004) In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicol in Vitro 18(1):71–77

    Article  PubMed  CAS  Google Scholar 

  37. Lee YW, Hennig B, Yao J, Toborek M (2001) Methamphetamine induces AP-1 and NF-κB binding and transactivation in human brain endothelial cells. J Neurosci Res 66(4):583–591

    Article  CAS  PubMed  Google Scholar 

  38. Ghazi-Khansari M, Mohammadi-Bardbori A, Hosseini MJ (2006) Using Janus green B to study paraquat toxicity in rat liver mitochondria. Ann N Y Acad Sci 1090(1):98–107

    Article  CAS  PubMed  Google Scholar 

  39. Hosseini M-J, Shaki F, Ghazi-Khansari M, Pourahmad J (2013) Toxicity of vanadium on isolated rat liver mitochondria: a new mechanistic approach. Metallomics 5(2):152–166

    Article  CAS  PubMed  Google Scholar 

  40. Yang S-T, Wang T, Dong E, Chen X-X, Xiang K, Liu J-H, Liu Y, Wang H (2012) Bioavailability and preliminary toxicity evaluations of alumina nanoparticles in vivo after oral exposure. Toxicology Res 1(1):69–74

    Article  CAS  Google Scholar 

  41. Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimers Dis 2011

  42. Lukiw WJ, Pogue AI (2007) Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem 101(9):1265–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu Z, Du Y, Xue H, Wu Y, Zhou B (2012) Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production. Neurobiology Aging 33(1):199.e1–199.e12

    Article  CAS  Google Scholar 

  44. Youdim M (1988) Iron in the brain: implications for Parkinson’s and Alzheimer’s diseases. Mount Sinai J medicine, New York 55(1):97–101

    CAS  Google Scholar 

  45. Sethi P, Jyoti A, Hussain E, Sharma D (2009) Curcumin attenuates aluminium-induced functional neurotoxicity in rats. Pharmacol Biochem Behav 93(1):31–39

    Article  CAS  PubMed  Google Scholar 

  46. Shaligram S, Campbell A (2013) Toxicity of copper salts is dependent on solubility profile and cell type tested. Toxicol in Vitro 27(2):844–851

    Article  CAS  PubMed  Google Scholar 

  47. Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health Part C 27(1):1–35

    Article  CAS  Google Scholar 

  48. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  49. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807

    Article  CAS  PubMed  Google Scholar 

  50. Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC (2008) Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett 463(1):145–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, Ray PC (2010) Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 487(1):92–96

    Article  CAS  Google Scholar 

  52. He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31(13):3657–3666

    Article  CAS  PubMed  Google Scholar 

  53. Wang S-H, Lee C-W, Chiou A, Wei P-K (2010) Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnol 8(1):33

    Article  CAS  Google Scholar 

  54. Campbell A, Prasad KN, Bondy SC (1999) Aluminum-induced oxidative events in cell lines: glioma are more responsive than neuroblastoma. Free Radic Biol Med 26(9):1166–1171

    Article  CAS  PubMed  Google Scholar 

  55. Strong MJ, Garruto RM, Joshi JG, Mundy WR, Shafer TJ (1996) Can the mechanisms of aluminum neurotoxicity be integrated into a unified scheme? J Toxicology Environ Health Part A 48(6):599–614

    Article  CAS  Google Scholar 

  56. Prakash NT, Rao KJ (1995) Modulations in antioxidant enzymes in different tissues of marine bivalve Perna viridis during heavy metal exposure. Mol Cell Biochem 146(2):107–113

    Article  CAS  PubMed  Google Scholar 

  57. Kaiser R, Correa M, Spanevello R, Morsch V, Mazzanti C, Goncalves J, Schetinger M (2005) Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminium on different mouse brain regions. J Inorg Biochem 99:1865–1870

    Article  CAS  Google Scholar 

  58. Candan N, Tuzmen N (2008) Very rapid quantification of malondialdehyde (MDA) in rat brain exposed to lead, aluminium and phenolic antioxidants by high-performance liquid chromatography-fluorescence detection. Neurotoxicology 29(4):708–713

    Article  CAS  PubMed  Google Scholar 

  59. Golub MS, Han B, Keen CL, Gershwin ME (1992) Effects of dietary aluminum excess and manganese deficiency on neurobehavioral endpoints in adult mice. Toxicol Appl Pharmacol 112(1):154–160

    Article  CAS  PubMed  Google Scholar 

  60. Dong E, Wang Y, Yang S-T, Yuan Y, Nie H, Chang Y, Wang L, Liu Y, Wang H (2011) Toxicity of nano gamma alumina to neural stem cells. J Nanosci Nanotechnol 11(9):7848–7856

    Article  CAS  PubMed  Google Scholar 

  61. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    Article  CAS  PubMed  Google Scholar 

  62. Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495(1–2):12–15

    Article  CAS  PubMed  Google Scholar 

  63. Garrido C, Galluzzi L, Brunet M, Puig P, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death & Differentiation 13(9):1423–1433

    Article  CAS  Google Scholar 

  64. Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. Toxicol Lett 188(2):112–118

    Article  CAS  PubMed  Google Scholar 

  65. Zhao J, Wang Z, Liu X, Xie X, Zhang K, Xing B (2011) Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. J Hazard Mater 197:304–310

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was extracted from Pharm.D. thesis of Mehdi Nazari.

Funding

This study was supported by a grant from the research council of Mazandaran University of Medical Sciences, Sari, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Shaki.

Ethics declarations

All experimental procedures were conducted according to the ethical standards and protocols approved by the Committee of Animal Experimentation of Mazandaran University of Medical Sciences, Sari, Iran.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirshafa, A., Nazari, M., Jahani, D. et al. Size-Dependent Neurotoxicity of Aluminum Oxide Particles: a Comparison Between Nano- and Micrometer Size on the Basis of Mitochondrial Oxidative Damage. Biol Trace Elem Res 183, 261–269 (2018). https://doi.org/10.1007/s12011-017-1142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1142-8

Keywords

Navigation