Skip to main content

Advertisement

Log in

Investigation of Heavy Metal Level and Mineral Nutrient Status in Widely Used Medicinal Plants’ Leaves in Turkey: Insights into Health Implications

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The use of plants in treatments has been as old as humanity and it has preserved its popularity for centuries til now because of their availability, affordability and safeness. However, despite their widespread use, safety and quality issues have been major concerns in the world due to industrial- and anthropogenic-based heavy metal contamination risks. Thus, this study was attempted to analyze the heavy metal levels and mineral nutrient status of widely used medicinal plants in Turkey to have insights about their health implications on humans. The plant concentrations of B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn were analyzed by ICP-OES in the leaves of 44 medical plants purchased from herbal markets of three different districts of Istanbul/Turkey. The measured lowest to highest concentrations were 0.065–79.749 mg kg−1 B, 921.802–12,854.410 mg kg−1 Ca, 0.020–0.558 mg kg−1 Cd, 0.015–4.978 mg kg−1 Cr, 0.042–8.489 mg kg−1 Cu, 34.356–858.446 mg kg−1 Fe, 791.323–15,569.349 mg kg−1 K, 102.236–2837.836 mg kg−1 Mg, 4.915–91.519 mg kg−1 Mn, 10.224–3213.703 mg kg−1 Na, 0.001–5.589 mg kg−1 Ni, 0.003–3.636 mg kg−1 Pb and 2.601–36.102 mg kg−1 Zn. Those levels in plants were in acceptable limits though some elements in some plants have high limits which were not harmful. Variations (above acceptable limits) in element concentrations also indicated that these plants could be contaminated with other metals and that genetic variations may influence accumulation of these elements at different contents. Overall, analyzed medicinal plants are expected not to pose any serious threat to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okatch H, Ngwenya B, Raletamo KM et al (2012) Determination of potentially toxic heavy metals in traditionally used medicinal plants for HIV/AIDS opportunistic infections in Ngamiland District in northern Botswana. Anal Chim Acta 730:42–48

    Article  CAS  PubMed  Google Scholar 

  2. Kumar V, Roy S, Barman D (2015) Effect of Mikania cordata (Burm) BL Robins. on non-specific immune response of Catla catla (Hamilton, 1822) against Aphanomyces invadans. Fish Technol 52:20–25

    CAS  Google Scholar 

  3. Street RA, Stirk WA, Van Staden J (2008) South African traditional medicinal plant trade—challenges in regulating quality, safety and efficacy. J Ethnopharmacol 119:705–710

    Article  CAS  PubMed  Google Scholar 

  4. Yeh ML, Lin KC, Chen HH et al (2015) Use of traditional medicine and complementary and alternative medicine in Taiwan: a multilevel analysis. Holist Nurs Pract 29:87–95

    Article  PubMed  Google Scholar 

  5. Heinrich M (2000) Ethnobotany and its role in drug development. Phytother Res 14:479–488

    Article  CAS  PubMed  Google Scholar 

  6. Saad B, Said O (2011) Greco-Arab and Islamic herbal medicine: traditional system, ethics, safety, efficacy, and regulatory issues. John Wiley & Sons

  7. Mahmood A, Rashid S, Malik RN (2013) Determination of toxic heavy metals in indigenous medicinal plants used in Rawalpindi and Islamabad Cities, Pakistan. J Ethnopharmacol 148:158–164

    Article  CAS  PubMed  Google Scholar 

  8. Calixto JB (2005) Twenty-five years of research on medicinal plants in Latin America: a personal review. J Ethnopharmacol 100:131–134

    Article  PubMed  Google Scholar 

  9. WHO (2005) Quality control methods for medicinal plant materials. World Health Organization, Geneva

    Google Scholar 

  10. Ernst E (2002) Toxic heavy metals and undeclared drugs in Asian herbal medicines. Trends Pharmacol Sci 23:136–139

    Article  CAS  PubMed  Google Scholar 

  11. Steenkamp V, Cukrowska E, Stewart MJ (2006) Metal concentrations in South African traditional herbal remedies. Res Lett S Afr J Sci 102:256–258

    CAS  Google Scholar 

  12. Dargan PI, Gawarammana IB, Archer JRH et al (2008) Heavy metal poisoning from Ayurvedic traditional medicines: an emerging problem? Int J Environ Health 2:463–472

    Article  CAS  Google Scholar 

  13. Chan TYK, Tomlinson B, Critchley AJH (1993) Chinese herbal medicines revisited: a Hong Kong perspective. Lancet 342:1532–1534

    Article  CAS  PubMed  Google Scholar 

  14. Caldas ED, Machado LL (2004) Cadmium, mercury and lead in medicinal herbs in Brazil. Food Chem Toxicol 42:599–603

    Article  CAS  PubMed  Google Scholar 

  15. Street RA (2012) Heavy metals in medicinal plant products—an African perspective. S Afr J Bot 82:67–74

    Article  CAS  Google Scholar 

  16. Murch SJ, Haq K, Rupasinghe HPV et al (2003) Nickel contamination affects growth and secondary metabolite composition of St. John’s wort (Hypericum perforatum L.) Environ Exp Bot 49:251–257

    Article  CAS  Google Scholar 

  17. Osma E, Ozyigit II, Leblebici Z et al (2012) Determination of heavy metal concentrations in tomato (Lycopersicon esculentum Miller) grown in different station types. Rom Biotechnol Lett 17:6962–6974

    CAS  Google Scholar 

  18. Van der Ent A, Baker AJ, Reeves RD et al (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  19. Severoglu Z, Ozyigit I I, Dogan I et al (2015) The usability of Juniperus virginiana L. as a biomonitor of heavy metal pollution in Bishkek City, Kyrgyzstan. Biotechnol Biotec Eq.

  20. Yasar U, Ozyigit II, Demir G et al (2012) Determination of hair iron levels of healthy female high school students with AAS in the Pendik District, Istanbul-Turkey. Fresenius Environ Bull 21:2644–2648

    CAS  Google Scholar 

  21. Farag S, Das R, Strosnider WH et al. (2015) Possible health effects of living in proximity to mining sites near Potosi, Bolivia

  22. Ozcan MM, Harmankaya M, Gezgin S (2012) Mineral and heavy metal contents of the outer and inner tissues of commonly used fruits. Environ Monit Assess 184:313–320

    Article  PubMed  Google Scholar 

  23. Osma E, Serin M, Leblebici Z et al (2013) Assessment of heavy metal accumulations (Cd, Cr, Cu, Ni, Pb, and Zn) in vegetables and soils. Pol J Environ Stud 22:1449–1455

    CAS  Google Scholar 

  24. Saglam C (2013) Heavy metal accumulation in edible parts of some cultivated plants and media samples from a volcanic region in southern Turkey. Ekoloji 22:1–8

    Article  CAS  Google Scholar 

  25. Gurel S, Basar H (2014) Metal status of olive trees grown in southeastern Marmara Region of Turkey. Commun Soil Sci Plan 45:1464–1479

    Article  CAS  Google Scholar 

  26. Obiajunwa EI, Adebajo AC, Omobuwajo OR (2002) Essential and trace element contents of some Nigerian medicinal plants. J Radioanalytical Nuclear Chem 252:473–476

    Article  CAS  Google Scholar 

  27. Wagesho Y, Chandravanshi B S (2010) Levels of essential and non-essential metals in ginger (Zingiber officinale) cultivated in Ethiopia. Url: http://etd.aau.edu.et//dspace/handle/123456789/2354. Retrieved

  28. Saracoglu I A (2008) Tıbbi Bitkiler Rehberi. Pegasus Press pp 1–224

  29. Saracoglu I A (2011) Şifa Kitabı. Hayy kitap Press pp 1–157

  30. Eisenman S W, Struwe L, Zaurov D E (2012) Medicinal plants of Central Asia: Uzbekistan and Kyrgyzstan. Springer Science & Business Media pp 1–340

  31. Rai M K, Cordell G A, Martinez J L, et al (2012) Medicinal plants: biodiversity and drugs. CRC Press pp1–650

  32. Saracoglu I A (2014) Bitkisel Sağlık Rehberi, Saracoglu Press pp 1–376

  33. Yaniv Z, Dudai N (2014) Medicinal and aromatic plants of the Middle-East (Vol. 2). Springer. pp. 1–337

  34. TUBIVES (2015) Turkish plants data service, www.tubives.org.

  35. Altay V, Ozyigit II, Yarci C (2010) Urban ecological characteristics and vascular wall flora on the Anatolian side of Istanbul, Turkey. Maejo Int J Sci Technol 4:483–495

    Google Scholar 

  36. Pawlisz AV (1997) Canadian water quality guidelines for Cr. Environ Toxicol Water Qual 12:123–161

    Article  CAS  Google Scholar 

  37. Jones C, Jacobsen J (2001) Plant nutrition and soil fertility, nutrient management module no:2. Montana State University, extension service 4449-2.

  38. Kabata-Pendias A, Pendias H (2001) Trace elements in soils. 3rd Ed. Boca Raton, London, New York, Crc Press pp. 1–413.

  39. Corlett JL, Clegg MS, Keen CL et al (2002) Mineral content of culinary and medicinal plants cultivated by Hmong refugees living in Sacramento, California. Int J Food Sci Nutr 53:117–128

    Article  PubMed  Google Scholar 

  40. Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

  41. Blum W E H, Horak O, Mentler A et al (2014) Trace elements. Environmental and ecological chemistry, Sabljic a. (Éditeur). Encyclopedia of life support systems (EOLSS), developed under the auspices of the UNESCO, Oxford, UK.

  42. Kacar B, Katkat V (2007) Bitki Besleme Nobel Yayınları pp. 1–379.

  43. Kabata-Pendias A, Mukherjee A B, (2007) Trace elements from soil to human Berlin: Springer pp. 1–550.

  44. Yasar U, Ozyigit II, Serin M (2010) Judas tree (Cercis siliquastrum L. subsp. siliquastrum) as a possible biomonitor for Cr, Fe and Ni in Istanbul (Turkey). Rom Biotechnol Lett 15:4979–4989

    CAS  Google Scholar 

  45. Nirupa N, Prasad M N V, (2008) Iron bioavailability, homeostasis through phytoferritins and fortification strategies: implications for human health and nutrition, in: Trace elements as contaminants and nutrients: consequences in ecosystems and human health, Ed. M.N.V. Prasad, John Wiley & Sons, Inc pp. 233–266

  46. Wei J, Theil EC (2000) Identification and characterization of the iron regulatory element in the ferritin gene of a plant (soybean). J Biol Chem 275:17488–17493

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt W (2003) Iron homeostasis in plants: sensing and signaling pathways. J Plant Nutr 26:2211–2230

    Article  CAS  Google Scholar 

  48. Taylor DJC, Page DC, Geldenhuys P (1988) Iron and steel in South Africa. J South Afr Inst Min Metal 88:73–95

    CAS  Google Scholar 

  49. Müller DB, Wang T, Duval B et al (2006) Exploring the engine of anthropogenic iron cycles. Proc Natl Acad Sci 103:16111–16116

    Article  PubMed  PubMed Central  Google Scholar 

  50. Akguc N, Ozyigit II, Yasar U et al (2010) Use of Pyracantha coccinea Roem. as a possible biomonitor for the selected heavy metals. Int J Environ Sci Tec 7:427–434

    Article  CAS  Google Scholar 

  51. Mamani MCV, Aleixo LM, de Abreu MF et al (2005) Simultaneous determination of cadmium and lead in medicinal plants by anodic stripping voltammetry. J Pharmaceut Biomed 37:709–713

    Article  CAS  Google Scholar 

  52. Ebrahim AM, Eltayeb MH, Khalid H et al (2012) Study on selected trace elements and heavy metals in some popular medicinal plants from Sudan. J Nat Med 66:671–679

    Article  CAS  PubMed  Google Scholar 

  53. Subramanian R, Gayathri S, Rathnavel C et al (2012) Analysis of mineral and heavy metals in some medicinal plants collected from local market. Asian Pacific Journal of Tropical Biomedicine 2:74–78

    Article  Google Scholar 

  54. Ajasa AMO, Bello MO, Ibrahim AO et al (2004) Heavy trace metals and macronutrients status in herbal plants of Nigeria. Food Chem 85:67–71

    Article  CAS  Google Scholar 

  55. Esetlili BC, Pekcan T, Çobanoglu O et al (2014) Essential plant nutrients and heavy metals concentrations of some medicinal and aromatic plants. J Agr Sci 20:239–247

    Google Scholar 

  56. Chan K (2003) Some aspects of toxic contaminants in herbal medicines. Chemosphere 52:1361–1371

    Article  CAS  PubMed  Google Scholar 

  57. Balasubramanian R, He J, Wang L K (2009) Control, management, and treatment of metal emissions from motor vehicles, In Shammas, LK; Wang, JP; Chen, Y et al. Heavy metals in the environment. CRC Press pp. 475–490

  58. Olowoyo JO, Okedeyi OO, Mkolo NM et al (2012) Uptake and translocation of heavy metals by medicinal plants growing around a waste dump site in Pretoria, South Africa. South Afr J Bot 78:116–121

    Article  CAS  Google Scholar 

  59. Vaculík M, Jurkovic L, Matejkovic P, et al (2013) Potential risk of arsenic and antimony accumulation by medicinal plants naturally growing on old mining sites. Water Air Soil Pollut 224

  60. Jaison S, Muthukumar T (2017) Chromium accumulation in medicinal plants growing naturally on tannery contaminated and non-contaminated soils. Biological trace element research. Biol Trace Elem Res 175(1):223–235

    Article  CAS  PubMed  Google Scholar 

  61. Ozcan MM, Akbulut M (2008) Estimation of minerals, nitrate and nitrite contents of medicinal and aromatic plants used as spices, condiments and herbal tea. Food Chem 106:852–858

    Article  Google Scholar 

  62. Lubbe A, Verpoorte R (2011) Cultivation of medicinal and aromatic plants for speciality industrial materials. Ind Crop Prod 34:785–801

    Article  CAS  Google Scholar 

  63. WHO (2003) Guidelines on good agricultural and collection practices (GACP) for medicinal plants. Geneva

Download references

Acknowledgments

We would like to express our special gratitude to Dr. Mehmet Emin Uras and Dr. Recep Vatansever for their assistance from Marmara University, Department of Biology. Also, we are thankful to Assoc. Prof. Dr. Birsen Eygi Erdogan from Marmara University, Department of Statistics for the statistical analyses. This study was supported in part by the Research Foundation of Marmara University (BAPKO), Project No. FEN-C-YLP-130612-0230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Ilker Ozyigit.

Appendices

Appendix 1

Table 3 Mineral nutrient and heavy metal contents in leaves of analyzed medicinal plants (mg kg−1)

Appendix 2

Hierarchical cluster analysis, dendrogram using average linkage (Between Species). 1- Achillea millefolium L., 2- Alchemilla alpina L., 3- Alkanna tinctoria L., 4- Artemisia absinthium L., 5- Artemisia dracunculus L., 6- Avena sativa L., 7- Berberis vulgaris L., 8- Camellia sinensis L., 9- Capsella bursa-pastoris L., 10- Cassia acutifolia Del., 11- Cinchona succirubra L., 12- Citrus aurantium L., 13- Cynara scolymus L., 14- Ficaria verna Huds., 15- Foeniculum vulgare Mill., 16- Fumaria officinalis L., 17- Galium aparine L., 18- Ginkgo biloba L., 19- Helichrysum arenarium L., 20- Humulus lupulus L., 21- Hypericum perforatum L., 22- Juglans regia L., 23- Lamium album L., 24- Laurus nobilis L., 25- Lavandula stoechas L., 26- Melissa officinalis L., 27- Morus nigra L., 28- Myrtus communis L., 29- Ocimum basilicum L., 30- Olea europaea L., 31- Origanum majorana L., 32- Persea gratissima Mill., 33- Plantago lanceolata L., 34- Rosmarinus officinalis L., 35- Rubus fruticosus L., 36- Ruta graveolens L., 37- Salvia officinalis L., 38- Sideritis condensata Boiss. et Heldr., 39- Solidago virgaurea L., 40- Sorbus domestica L., 41- Symphytum officinale L., 42- Taraxacum officinale F.H. Wigg, 43- Tussilago farfara L., 44- Viscum album L.

Table 4
Table 5
Table 6
Table 7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozyigit, I.I., Yalcin, B., Turan, S. et al. Investigation of Heavy Metal Level and Mineral Nutrient Status in Widely Used Medicinal Plants’ Leaves in Turkey: Insights into Health Implications. Biol Trace Elem Res 182, 387–406 (2018). https://doi.org/10.1007/s12011-017-1070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1070-7

Keywords

Navigation