Skip to main content
Log in

Determine Multiple Elements Simultaneously in the Sera of Umbilical Cord Blood Samples—a Very Simple Method

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 23 February 2017

Abstract

Analyzing the concentrations of heavy metals in the sera of umbilical cord blood samples can provide useful information about prenatal exposure to environmental agents. An analytical method based on ICP-MS to simultaneously determine multiple elements in umbilical cord blood samples was developed for assessing the in utero exposure to metallic and metalloid elements. The method only required as little as 100 μL of serum diluted 1:25 for direct analysis. Matrix-matched protocol was used to eliminate mass matrix interference and kinetic energy discrimination mode was used to eliminate the polyatomic ion interference. The assay was completed on average within 4 min with the detection limits ranging from 0.0002 to 44.4 μg/L for all the targeted elements. The detection rates for most of elements were 100 % other than cadmium (Cd), lead (Pb), and mercury (Hg). The testing results of the certified reference materials were ideal. The method is simple and sensitive, so it is suitable for the monitoring of large quantities of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perkins M, Wright RO, Amarasiriwardena CJ, Jayawardene I, Rifas-Shiman SL, Oken E (2014) Very low maternal lead level in pregnancy and birth outcomes in an eastern Massachusetts population. Ann Epidemiol 24(12):915–919. doi:10.1016/j.annepidem.2014.09.007

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bellinger DC (2008) Very low lead exposures and children’s neurodevelopment. Curr Opin Pediatr 20(2):172–177. doi:10.1097/MOP.0b013e3282f4f97b

    Article  PubMed  Google Scholar 

  3. Ou L, Chen C, Chen L, Wang HH, Yang TJ, Xie H, Tong YD, Hu D, Zhang W, Wang XJ (2015) Low-level prenatal mercury exposure in North China: an exploratory study of anthropometric effects. Environ Sci Technol 49(11):6899–6908. doi:10.1021/es5055868

    Article  CAS  PubMed  Google Scholar 

  4. Wu J, Ying T, Shen Z, Wang H (2014) Effect of low-level prenatal mercury exposure on neonate neurobehavioral development in China. Pediatr Neurol 5(1):93–99. doi:10.1016/j.pediatrneurol.2014.03.018

    Article  Google Scholar 

  5. Ikeh-Tawari EP, Anetor JI, Charles-Davies MA (2013) Cadmium level in pregnancy, influence on neonatal birth weight and possible amelioration by some essential trace elements. Toxicol Int 20(1):108–112. doi:10.4103/0971-6580.111558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shirai S, Suzuki Y, Yoshinaga J, Mizumoto Y (2010) Maternal exposure to low-level heavy metals during pregnancy and birth size. J Environ Sci Health A Tox Hazard Subst Environ Eng 45(11):1468–1474. doi:10.1080/10934529.2010.500942

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Chen L, Gao Y, Zhang Y, Wang C, Zhou Y, Hu Y, Shi R, Tian Y (2016) Effects of prenatal exposure to cadmium on neurodevelopment of infants in Shandong, China. Environ Pollut 211(1):67–73. doi:10.1016/j.envpol.2015.12.038

    Article  CAS  PubMed  Google Scholar 

  8. Davis MA, Higgins J, Li Z, Gilbert-Diamond D, Baker ER, Das A, Karagas MR (2014) Preliminary analysis of in utero low-level arsenic exposure and fetal growth using biometric measurements extracted from fetal ultrasound reports. Environ Health 14(1):12. doi:10.1186/1476-069X-14-12

    Article  Google Scholar 

  9. Yu X, Chen W, Wei Z, Ren T, Yang X, Yu X (2016) Effects of maternal mild zinc deficiency and different ways of zinc supplementation for offspring on learning and memory. Food Nutr Res 60:29467. doi:10.3402/fnr.v60.29467

    Article  PubMed  Google Scholar 

  10. Mistry HD, Kurlak LO, Young SD, Briley AL, Pipkin FB, Baker PN, Poston L (2014) Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants. Matern Child Nutr 10(3):327–334. doi:10.1111/j.1740-8709.2012.00430.x

    Article  PubMed  Google Scholar 

  11. Terrin G, Canani Berni R, Di Chiara M, Pietravalle A, Aleandri V, Conte F, De Curtis M (2015) Zinc in early life: a key element in the fetus and preterm neonate. Nutrients 7(12):10427–10446. doi:10.3390/nu7125542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen PJ, Gong B, FY X, Luo Y (2015) Four trace elements in pregnant women and their relationships with adverse pregnancy outcomes. Eur Rev Med Pharmacol Sci 19(24):4690–4697

    PubMed  Google Scholar 

  13. Khoushabi F, Shadan MR, Miri A, Sharifi-Rad J (2016) Deternination of maternal serum zinc, iron, calcium and magnesium during pregnancy in pregnant women and umbilical cord blood and their association with outcome of pregnancy. Mater Sociomed 28(2):104–107. doi:10.5455/msm.2016.28.104-107

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang H, YF H, Hao JH, Chen YH, Wang Y, Zhu P, Zhang C, YY X, Tao FB, DX X (2016) Maternal serum zinc concentration during pregnancy is inversely associated with risk of preterm birth in a Chinese population. J Nutr 146(3):509–515. doi:10.3945/jn.115.220632

    Article  CAS  PubMed  Google Scholar 

  15. Ota E, Mori R, Middleton P, Tobe-Gai R, Mahomed K, Miyazaki C, Bhutta ZA (2015) Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst Rev 2(2):CD000230. doi:10.1002/14651858

    Google Scholar 

  16. Wang H, YF H, Hao JH, Chen YH, PY S, Wang Y, Yu Z, Fu L, YY X, Zhang C, Tao FB, DX X (2015) Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: a population-based birth cohort study. Sci Rep 5:11262. doi:10.1038/srep11262

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sanders AP, Flood K, Chiang S, Herring AH, Wolf L, Fry RC (2012) Towards prenatal biomonitoring in North Carolina: assessing arsenic, cadmium, mercury, and lead levels in pregnant women. PLoS One 7(3):e31354. doi:10.1371/journal.pone.0031354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Obi E, Orisakwe OE, Okafor C, Igwebe A, Ebenebe J, Afonne OJ, Ifediata F, Nils B, Nriagu J (2014) Towards prenatal biomonitoring in eastern Nigeria: assessing lead levels and anthropometric parameters of newborns. J UOEH 36(3):159–170

    Article  PubMed  Google Scholar 

  19. Liu KS, Mao XD, Hao JH, Shi J, Dai CF, Chen WJ (2013) Towards prenatal biomonitoring in Nanjing, China: lead and cadmium levels in the duration of pregnancy. Chin Med J 126(16):3107–3111

    PubMed  Google Scholar 

  20. Jain RB (2013) Effect of pregnancy on the levels of urinary metals for females aged 17–39 years old: data from National Health and Nutrition Examination Survey 2003–2010. J Toxicol Environ Health A 76(1):86–97. doi:10.1080/15287394.2013.738171

    Article  CAS  PubMed  Google Scholar 

  21. Forde MS, Dewailly E, Robertson L, Laouan Sidi EA, Côté S, Sandy L, Dumas P, Ayotte P (2014) Mercury and lead blood concentrations in pregnant women from 10 caribbean countries. Environ Sci Process Impacts 16(9):2184–2190. doi:10.7727/wimj.2015.112

    Article  CAS  PubMed  Google Scholar 

  22. Su Z, Chen R, Li T (2005) Occupational hazards evaluation for constructive project. China's population press, Beijing

    Google Scholar 

  23. Nixon DE, Moyer TP (1996) Routine clinical determination of lead, arsenic, cadmium, and thallium in urine and whole blood by inductively coupled plasma mass spectrometry. Spectrochim Acta Part B At Spectrosc 51(1):13–25

    Article  Google Scholar 

  24. Li B, Yang HX (2010) The principle and application of inductively coupled plasma mass spectrometry. Publishing House Geological press, Beijing

    Google Scholar 

  25. Arbuckle TE, Liang CL, Morisset AS, Fisher M, Weiler H, Cirtiu CM, Legrand M, Davis K, Ettinger AS, Fraser WD (2016) Maternal and fetal exposure to cadmium, lead, manganese and mercury: the MIREC study. Chemosphere 163:270–282. doi:10.1016/j.chemosphere.2016.08.023

    Article  CAS  PubMed  Google Scholar 

  26. Díaz-Gómez NM, Bissé E, Senterre T, González-González NL, Domenech E, Lindinger G, Epting T, Barroso F (2016) Levels of silicon in maternal, cord and newborn serum and their relationship with those of zinc and copper. J Pediatr Gastroenterol Nutr. doi:10.1097/mpg.0000000000001318

    PubMed  Google Scholar 

  27. Musimwa AM, Kanteng GW, Kitoko HT, Luboya ON (2016) Trace elements in serum of malnourished and well-nourished children living in Lubumbashi and Kawama. Pan Afr Med J 24:11. doi:10.11604/pamj.2016.24.11.9236

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding was provided by the National Natural Science Foundation of China (No. 81330068, Beijing, People’s Republic of China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shilu Tong or Fangbiao Tao.

Ethics declarations

All experimental procedures were approved by the institutional ethics committee of Anhui Medical University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Chunmei Liang, Zhijuan Li, and Xun Xia are the equal first authors.

An erratum to this article is available at http://dx.doi.org/10.1007/s12011-017-0958-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Li, Z., Xia, X. et al. Determine Multiple Elements Simultaneously in the Sera of Umbilical Cord Blood Samples—a Very Simple Method. Biol Trace Elem Res 177, 1–8 (2017). https://doi.org/10.1007/s12011-016-0853-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0853-6

Keywords

Navigation