Skip to main content
Log in

Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boroujeni ST, Naghdi N, Shahbazi M, Farrokhi A, Bagherzadeh F, Kazemnejad A, Javadian M (2009) The effect of severe zinc deficiency and zinc supplement on spatial learning and memory. Biol Trace Elem Res 130(1):48–61

    Article  Google Scholar 

  2. Flinn J, Hunter D, Linkous D, Lanzirotti A, Smith L, Brightwell J, Jones B (2005) Enhanced zinc consumption causes memory deficits and increased brain levels of zinc. Physiol Behav 83(5):793–803

    Article  CAS  PubMed  Google Scholar 

  3. Sandstead HH, Penland JG, Alcock NW, Dayal HH, Chen XC, Li JS, Zhao F, Yang JJ (1998) Effects of repletion with zinc and other micronutrients on neuropsychologic performance and growth of Chinese children. Am J Clin Nutr 68(2):470S–475S

    CAS  PubMed  Google Scholar 

  4. Zagzi T, Swoboda M, Rycerski W, Winnicka H, Kostrzewa R, Kwieciñski A, Brus R (2005) The effects of zinc on the central dopaminergic system of rats prenatally exposed to cadmium. Pol J Environ Stud 14(5):569–576

    Google Scholar 

  5. Prakash A, Bharti K, Majeed ABA (2015) Zinc: indications in brain disorders. Fundam Clin Pharmacol 29(2):131–149

    Article  CAS  PubMed  Google Scholar 

  6. Warthon-Medina M, Moran V, Stammers A, Dillon S, Qualter P, Nissensohn M, Serra-Majem L, Lowe N (2015) Zinc intake, status and indices of cognitive function in adults and children: a systematic review and meta-analysis. Eur J Clin Nutr 69(6):649–661

    Article  CAS  PubMed  Google Scholar 

  7. Nuttall JR, Oteiza PI (2014) Zinc and the aging brain. Genes & Nutrition 9(1):1–11

    Article  CAS  Google Scholar 

  8. Chu Y, Mouat M, Harris R, Coffield J, Grider A (2003) Water maze performance and changes in serum corticosterone levels in zinc-deprived and pair-fed rats. Physiol Behav 78(4):569–578

    Article  CAS  PubMed  Google Scholar 

  9. Danscher G, Hall E, Fredens K, Fjerdingstad E, Fjerdingstad E (1975) Heavy metals in the amygdala of the rat: zinc, lead and copper. Brain Res 94(1):167–172

    Article  CAS  PubMed  Google Scholar 

  10. Frederickson CJ, Kasarskis E, Ringo D, Frederickson R (1987) A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods 20(2):91–103

    Article  CAS  PubMed  Google Scholar 

  11. Greiner A, Chan S, Nicolson G (1975) Determination of calcium, copper, magnesium, and zinc content of identical areas in human cerebral hemispheres of normals. Clin Chim Acta 61(3):335–340

    Article  CAS  PubMed  Google Scholar 

  12. Halas E, Eberhardt M, Diers M, Sandstead H (1983) Learning and memory impairment in adult rats due to severe zinc deficiency during lactation. Physiol Behav 30(3):371–381

    Article  CAS  PubMed  Google Scholar 

  13. Takeda A, Tamano H, Tochigi M, Oku N (2005) Zinc homeostasis in the hippocampus of zinc-deficient young adult rats. Neurochem Int 46(3):221–225

    Article  CAS  PubMed  Google Scholar 

  14. Takeda A, Suzuki M, Tempaku M, Ohashi K, Tamano H (2015) Influx of extracellular Zn 2+ into the hippocampal CA1 neurons is required for cognitive performance via long-term potentiation. Neuroscience 304:209–216

    Article  CAS  PubMed  Google Scholar 

  15. Młyniec K, Budziszewska B, Holst B, Ostachowicz B, Nowak G (2015) GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus. Int J Neuropsychopharmacol 18(3):1–8

    Google Scholar 

  16. Takeda A (2012) Zinc signaling in the hippocampus and its relation to pathogenesis of depression. J Trace Elem Med Biol 26(2):80–84

    Article  CAS  PubMed  Google Scholar 

  17. Bannerman D, Deacon R, Offen S, Friswell J, Grubb M, Rawlins J (2002) Double dissociation of function within the hippocampus: spatial memory and hyponeophagia. Behav Neurosci 116(5):884–901

    Article  CAS  PubMed  Google Scholar 

  18. Vitolo OV, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M (2002) Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci 99(20):13217–13221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Longoni G, Rocca MA, Pagani E, Riccitelli GC, Colombo B, Rodegher M, Falini A, Comi G, Filippi M (2015) Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS. Brain Struct Funct 220(1):435–444

    Article  PubMed  Google Scholar 

  20. Bitanihirwe BK, Cunningham MG (2009) Zinc: the brain’s dark horse. Synapse 63(11):1029–1049

    Article  CAS  PubMed  Google Scholar 

  21. Golub MS, Keen CL, Gershwin ME, Hendrickx AG (1995) Developmental zinc deficiency and behavior. J Nutr 125(8):2263S

    CAS  PubMed  Google Scholar 

  22. Halas ES, Hunt CD, Eberhardt MJ (1986) Learning and memory disabilities in young adult rats from mildly zinc deficient dams. Physiol Behav 37(3):451–458

    Article  CAS  PubMed  Google Scholar 

  23. Keller KA, Grider A, Coffield JA (2001) Age-dependent influence of dietary zinc restriction on short-term memory in male rats. Physiol Behav 72(3):339–348

    Article  CAS  PubMed  Google Scholar 

  24. Sandstead HH (1985) Zinc: essentiality for brain development and function. Nutr Rev 43(5):129–137

    Article  CAS  PubMed  Google Scholar 

  25. Kida K, Tsuji T, Tanaka S, Kogo M (2015) Zinc deficiency with reduced mastication impairs spatial memory in young adult mice. Physiol Behav 152:231–237

    Article  CAS  PubMed  Google Scholar 

  26. Hamadani JD, Fuchs GJ, Osendarp SJ, Huda SN, Grantham-McGregor SM (2002) Zinc supplementation during pregnancy and effects on mental development and behaviour of infants: a follow-up study. Lancet 360(9329):290–294

    Article  CAS  PubMed  Google Scholar 

  27. Tamura T, Goldenberg RL, Ramey SL, Nelson KG, Chapman VR (2003) Effect of zinc supplementation of pregnant women on the mental and psychomotor development of their children at 5 y of age. Am J Clin Nutr 77(6):1512–1516

    CAS  PubMed  Google Scholar 

  28. Tabrizian K, Yazdani A, Baheri B, Payandemehr B, Sanati M, Hashemzaei M, Miri A, Zandkarimi M, Belaran M, Fanoudi S (2016) Zinc chloride and lead acetate-induced passive avoidance memory retention deficits reversed by nicotine and bucladesine in mice. Biol Trace Elem Res 169(1):106–113

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki M, Fujise Y, Tsuchiya Y, Tamano H, Takeda A (2015) Excess influx of Zn 2+ into dentate granule cells affects object recognition memory via attenuated LTP. Neurochem Int 87:60–65

    Article  CAS  PubMed  Google Scholar 

  30. Contestabile A, Peña-Altamira E, Virgili M, Monti B (2016) Zinc supplementation in rats impairs hippocampal-dependent memory consolidation and dampens post-traumatic recollection of stressful event. Eur Neuropsychopharmacol. doi:10.1016/j.euroneuro.2015.12.041

  31. Seven M, Basaran SY, Cengiz M, Unal S, Yuksel A (2013) Deficiency of selenium and zinc as a causative factor for idiopathic intractable epilepsy. Epilepsy Res 104(1):35–39

    Article  CAS  PubMed  Google Scholar 

  32. McIntyre CK, Pal SN, Marriott LK, Gold PE (2002) Competition between memory systems: acetylcholine release in the hippocampus correlates negatively with good performance on an amygdala-dependent task. J Neurosci 22(3):1171–1176

    CAS  PubMed  Google Scholar 

  33. Tran M, Yamada K, Nakajima A, Mizuno M, He J, Kamei H, Nabeshima T (2003) Tyrosine nitration of a synaptic protein synaptophysin contributes to amyloid β-peptide-induced cholinergic dysfunction. Mol Psychiatry 8(4):407–412

    Article  CAS  PubMed  Google Scholar 

  34. Tran MH, Yamada K, Olariu A, Mizuno M, Ren XH, Nabeshima T (2001) Amyloid beta-peptide induces nitric oxide production in rat hippocampus: association with cholinergic dysfunction and amelioration by inducible nitric oxide synthase inhibitors. FASEB J 15(8):1407–1409

    CAS  PubMed  Google Scholar 

  35. Udayabanu M, Kumaran D, Nair RU, Srinivas P, Bhagat N, Aneja R, Katyal A (2008) Nitric oxide associated with iNOS expression inhibits acetylcholinesterase activity and induces memory impairment during acute hypobaric hypoxia. Brain Res 1230:138–149

    Article  CAS  PubMed  Google Scholar 

  36. Fahnestock M (2013) Cholinergic basal forebrain circuit degeneration in Alzheimer’s disease. FASEB J 27(1_MeetingAbstracts):316.315

  37. Karimfar MH, Tabrizian K, Azami K, Hosseini-Sharifabad A, Hoseini A, Pourghorban M, Aghsami M, Gholizadeh S, Abdollahi M, Roghani A (2009) Time course effects of lithium administration on spatial memory acquisition and cholinergic marker expression in rats. DARU J Pharm Sci 17(2):113–123

    CAS  Google Scholar 

  38. Hosseini-Sharifabad A, Mohammadi-Eraghi S, Tabrizian K, Soodi M, Khorshidahmad T, Naghdi N, Abdollahi M, Beyer C, Roghani A, Sharifzadeh M (2011) Effects of training in the Morris water maze on the spatial learning acquisition and VAChT expression in male rats. DARU J Pharm Sci 19(2):166–172

    CAS  Google Scholar 

  39. Chauhan PS, Misra UK, Kalita J, Chandravanshi LP, Khanna VK (2016) Memory and learning seems to be related to cholinergic dysfunction in JE rat model. Physiol Behav 156:148–155

    Article  CAS  PubMed  Google Scholar 

  40. Deffains M, Bergman H (2015) Striatal cholinergic interneurons and cortico‐striatal synaptic plasticity in health and disease. Mov Disord 30(8):1014–1025

    Article  CAS  PubMed  Google Scholar 

  41. Miranda I, Ferreira G, Ramı́ L, Bermúdez-Rattoni F (2003) Role of cholinergic system on the construction of memories: taste memory encoding. Neurobiol Learn Mem 80(3):211–222

    Article  CAS  PubMed  Google Scholar 

  42. Martinello K, Huang Z, Lujan R, Tran B, Watanabe M, Cooper EC, Brown DA, Shah MM (2015) Cholinergic afferent stimulation induces axonal function plasticity in adult hippocampal granule cells. Neuron 85(2):346–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mufson E, Mahady L, Waters D, Counts S, Perez S, DeKosky S, Ginsberg S, Ikonomovic M, Scheff S, Binder L (2015) Hippocampal plasticity during the progression of Alzheimer’s disease. Neuroscience 309:51–67

    Article  CAS  PubMed  Google Scholar 

  44. Zylla MM, Zhang X, Reichinnek S, Draguhn A, Both M (2013) Cholinergic plasticity of oscillating neuronal assemblies in mouse hippocampal slices. PLoS One 8(11), e80718

    Article  PubMed  PubMed Central  Google Scholar 

  45. Brock M, Nickel A-C, Madziar B, Blusztajn JK, Berse B (2007) Differential regulation of the high affinity choline transporter and the cholinergic locus by cAMP signaling pathways. Brain Res 1145:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hawkins RD, Son H, Arancio O (1998) Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Prog Brain Res 118:155–172

    Article  CAS  PubMed  Google Scholar 

  47. Majlessi N, Choopani S, Bozorgmehr T, Azizi Z (2008) Involvement of hippocampal nitric oxide in spatial learning in the rat. Neurobiol Learn Mem 90(2):413–419

    Article  CAS  PubMed  Google Scholar 

  48. Petrov KA, Malomouzh AI, Kovyazina IV, Krejci E, Nikitashina AD, Proskurina SE, Zobov VV, Nikolsky EE (2013) Regulation of acetylcholinesterase activity by nitric oxide in rat neuromuscular junction via N‐methyl‐d‐aspartate receptor activation. Eur J Neurosci 37(2):181–189

    Article  PubMed  Google Scholar 

  49. Najafi S, Payandemehr B, Tabrizian K, Shariatpanahi M, Nassireslami E, Azami K, Mohammadi M, Asadi F, Roghani A, Sharifzadeh M (2013) The role of nitric oxide in the PKA inhibitor induced spatial memory deficits in rat: involvement of choline acetyltransferase. Eur J Pharmacol 714(1):478–485

    Article  CAS  PubMed  Google Scholar 

  50. Law A, O’donnell J, Gauthier S, Quirion R (2002) Neuronal and inducible nitric oxide synthase expressions and activities in the hippocampi and cortices of young adult, aged cognitively unimpaired, and impaired Long–Evans rats. Neuroscience 112(2):267–275

    Article  CAS  PubMed  Google Scholar 

  51. Obrenovitch T, Urenjak J, Zilkha E, Jay T (2000) Excitotoxicity in neurological disorders—the glutamate paradox. Int J Dev Neurosci 18(2):281–287

    Article  CAS  PubMed  Google Scholar 

  52. Salter M, Knowles RG, Moncada S (1991) Widespread tissue distribution, species distribution and changes in activity of Ca 2 + -dependent and Ca 2 + -independent nitric oxide synthases. FEBS Lett 291(1):145–149

    Article  CAS  PubMed  Google Scholar 

  53. Siles E, Martı́nez-Lara E, Cañuelo A, Sánchez M, Hernández R, López-Ramos JC, Del Moral ML, Esteban FJ, Blanco S, Pedrosa JA (2002) Age-related changes of the nitric oxide system in the rat brain. Brain Res 956(2):385–392

    Article  CAS  PubMed  Google Scholar 

  54. Yuan X, Guo X, Deng Y, Zhu D, Shang J, Liu H (2015) Chronic intermittent hypoxia-induced neuronal apoptosis in the hippocampus is attenuated by telmisartan through suppression of iNOS/NO and inhibition of lipid peroxidation and inflammatory responses. Brain Res 1596:48–57

    Article  CAS  PubMed  Google Scholar 

  55. Stevens BJ (1972) Biological applications of the carbon rod atomizer in atomic absorption spectroscopy. 2. Determination of copper in small samples of tissue. Clin Chem 18(11):1379–1384

    CAS  PubMed  Google Scholar 

  56. Bonilla E (1978) Flameless atomic absorption spectrophotometric determination of manganese in rat brain and other tissues. Clin Chem 24(3):471–474

    CAS  PubMed  Google Scholar 

  57. Azami K, Etminani M, Tabrizian K, Salar F, Belaran M, Hosseini A, Hosseini-Sharifabad A, Sharifzadeh M (2010) The quantitative evaluation of cholinergic markers in spatial memory improvement induced by nicotine–bucladesine combination in rats. Eur J Pharmacol 636(1):102–107

    Article  CAS  PubMed  Google Scholar 

  58. Sharifzadeh M, Sharifzadeh K, Naghdi N, Ghahremani MH, Roghani A (2005) Posttraining intrahippocampal infusion of a protein kinase AII inhibitor impairs spatial memory retention in rats. J Neurosci Res 79(3):392–400

    Article  CAS  PubMed  Google Scholar 

  59. Tabrizian K, Najafi S, Belaran M, Hosseini-Sharifabad A, Azami K, Hosseini A, Soodi M, Kazemi A, Abbas A, Sharifzadeh M (2010) Effects of selective iNOS inhibitor on spatial memory in recovered and non-recovered ketamine induced-anesthesia in wistar rats. Iran J Pharm Res 9(3):313–320

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ebuehi OA, Akande GA (2008) Effect of zinc deficiency on memory, oxidative stress and blood chemistry in rats. Adv Med Dent Sci 2(3):74–82

    CAS  Google Scholar 

  61. Jing N, Kitani H, Morio I, Sakakura T, Tomooka Y, Shiurba R (1995) Expression of intermediate filament nestin during mouse brain development. Chin J Physiol Sci 12(1):1–8

    Google Scholar 

  62. Piechal A, Blecharz-Klin K, Pyrzanowska J, Widy-Tyszkiewicz E (2016) Influence of long-term zinc administration on spatial learning and exploratory activity in rats. Biol Trace Elem Res. doi:10.1007/s12011-015-0597-8

  63. Ibrahim AT, Magdy MA, Ahmed EA, Omar HM (2014) The protective effects of vitamin e and zinc supplementation against lithium-induced brain toxicity of male albino rats. Environ Pollut 4(1):9–18

    Article  Google Scholar 

  64. Singla N, Dhawan D (2016) Zinc improves cognitive and neuronal dysfunction during aluminium-induced neurodegeneration. Mol Neurobiol. doi:10.1007/s12035-015-9653-9

  65. Flinn JM, Bozzelli PL, Adlard PA, Railey AM (2014) Spatial memory deficits in a mouse model of late-onset Alzheimer’s disease are caused by zinc supplementation and correlate with amyloid-beta levels. Front Aging Neurosci 6(174):1–10

    Google Scholar 

  66. Szewczyk B (2013) Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci 5(33):1–12

    Google Scholar 

  67. Katzoff A, Ben-Gedalya T, Susswein AJ (2002) Nitric oxide is necessary for multiple memory processes after learning that a food is inedible in Aplysia. J Neurosci 22(21):9581–9594

    CAS  PubMed  Google Scholar 

  68. Farahmandfar M, Kadivar M, Naghdi N (2015) Possible interaction of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II on reversal of spatial memory impairment induced by morphine. Eur J Pharmacol 751:99–111

    Article  CAS  PubMed  Google Scholar 

  69. Butterfield DA, Swomley AM, Sultana R (2013) Amyloid β-peptide (1–42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal 19(8):823–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Baker-Nigh A, Vahedi S, Davis EG, Weintraub S, Bigio EH, Klein WL, Geula C (2015) Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer’s disease. Brain 138(6):1722–1737

    Article  PubMed  PubMed Central  Google Scholar 

  71. Noshita T, Murayama N, Nakamura S (2015) Effect of nicotine on neuronal dysfunction induced by intracerebroventricular infusion of amyloid-β peptide in rats. Eur Rev Med Pharmacol Sci 19(2):334–343

    CAS  PubMed  Google Scholar 

  72. Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJ, Knowles RG (1997) 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem 272(8):4959–4963

    Article  CAS  PubMed  Google Scholar 

  73. Lees G, Lehmann A, Sandberg M, Hamberger A (1990) The neurotoxicity of zinc in the rat hippocampus. Neurosci Lett 120(2):155–158

    Article  CAS  PubMed  Google Scholar 

  74. Bağirici F, Demir Ş, Bostanci MÖ, Güven A (2009) The effect of neuronal nitric oxide synthase inhibitor 7-nitroindazole on the cell death induced by zinc administration in the brain of rats. Turk J Med Sci 39(2):197–202

    Google Scholar 

  75. Li J, Yan B, Zhao X, Wang C (2004) Changes of cholecystokinin and nitric oxide synthase positive neurons of hippocampus in zinc-deficiency rat. Wei sheng Yan Jiu = J Hyg Res 33(5):559–561

    CAS  Google Scholar 

  76. Drechsel DA, Estévez AG, Barbeito L, Beckman JS (2012) Nitric oxide-mediated oxidative damage and the progressive demise of motor neurons in ALS. Neurotox Res 22(4):251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Tehran University of Medical Sciences (grant number 6093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sharifzadeh.

Ethics declarations

This study was designed in accordance with the guidelines of the Helsinki on animal care.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabrizian, K., Azami, K., Belaran, M. et al. Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression. Biol Trace Elem Res 173, 443–451 (2016). https://doi.org/10.1007/s12011-016-0679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0679-2

Keywords

Navigation