Skip to main content
Log in

The Antagonistic Effect of Selenium on Lead-Induced Inflammatory Factors and Heat Shock Proteins mRNA Expression in Chicken Livers

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of lead (Pb) poisoning on nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, the messenger RNA (mRNA) levels of inflammatory factors (nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), prostaglandin E synthases (PTGEs), and iNOS), heat shock proteins (HSPs) (HSP27, HSP40, HSP60, HSP70, and HSP90), and the antagonistic effect of selenium (Se) on Pb in chicken livers. One hundred eighty 7-day-old male chickens were randomly divided into four groups and were fed commercial diet and drinking water, Na2SeO3-added commercial diet and drinking water, commercial diet and (CH3OO)2Pb-added drinking water, and Na2SeO3-added commercial diet and (CH3OO)2Pb-added drinking water, respectively, for 30, 60, and 90 days. Then, NO content, iNOS activity, and the mRNA levels of NF-κB, TNF-α, COX-2, PTGEs, iNOS, HSP27, HSP40, HSP60, HSP70, and HSP90 were examined in chicken livers. The results showed that Pb poisoning induced NO content, iNOS activity, and mRNA expression of inflammation factors and HSPs in chicken livers. In addition, Se alleviated Pb-induced increase of inflammation factor and HSP expression in chicken livers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cheng HF, Hu YN (2010) Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environ Pollut 158:1134–1146

    Article  CAS  PubMed  Google Scholar 

  2. Wan H, Wu J, Sun P, Yang Y (2014) Investigation of delta-aminolevulinic acid dehydratase polymorphism affecting hematopoietic, hepatic and renal toxicity from lead in Han subjects of southwestern China. Acta Physiol Hung 101(1):59–66

    Article  CAS  PubMed  Google Scholar 

  3. Sansar W, Ahboucha S, Gamrani H (2011) Chronic lead intoxication affects glial and neural systems and induces hypoactivity in adult rat. Acta Histochem 113:601–607

    Article  CAS  PubMed  Google Scholar 

  4. Luriea DI, Brooksa DM, Gray LC (2006) The effect of lead on the avian auditory brainstem. Neuro Toxicol 27:108–117

    Google Scholar 

  5. Mohammadi M, Ghaznavi R, Keyhanmanesh R, Sadeghipour HR, Naderi R, Mohammadi H (2014) Caloric restriction prevents lead-induced oxidative stress and inflammation in rat liver. Sci World J 2014, 821524. doi:10.1155/2014/821524

    Google Scholar 

  6. Jitka O, Hana B, Veronika K, Jiří K, Ladislav N, Karel O, Miroslav P, Jana S, Hana Š, František V, Jiří P (2014) Oxidative stress and liver damage in birds exposed to diclofenac and lead. ACTA VET BRNO 83:299–304

    Article  Google Scholar 

  7. He GB, Michael K (2011) NF-κB and STAT3—key players in liver inflammation and cancer. Cell Res 21:159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lim JW, Kim H, Kim KH (2001) Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab Invest 81:349–360

    Article  CAS  PubMed  Google Scholar 

  9. Elisabetta A, Daniela A, Loredana B, Chiara R, Costanzo C, Amalia B, Dario G (2003) Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation. FEBS Lett 552:141–144

    Article  Google Scholar 

  10. Bouwmeester T, Angela B, Heinz R, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon A, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Furga GS (2004) A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nat Cell Biol 6:97–105

    Article  CAS  PubMed  Google Scholar 

  11. Kim DH, Chung JH, Yoon JS, Ha YM, Bae S, Lee EK, Jung KJ, Kim MS, Kim YJ, Kim MK, Chung HY (2013) Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-kB in LPS-stimulated RAW264.7 cells and mouse liver. J Ginseng Res 37(1):54–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma JN, Omran AA, Parvathy SS (2007) Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15:252–259

    Article  CAS  PubMed  Google Scholar 

  13. Du Y, Zhu YH, Teng XJ, Zhang K, Teng XH, Li S (2015) Toxicological effect of manganese on NF-κB/iNOS-COX-2 signaling pathway in chicken testes. Biol Trace Elem Res. doi:10.1007/s12011-015-0340-5

    Google Scholar 

  14. Subhankar D, Amal S, Sarbari L, Mazumder DNG (2005) Implications of oxidative stress and hepatic cytokine (TNF-α and IL-6) response in the pathogenesis of hepatic collagenesis in chronic arsenic toxicity. Toxicol Appl Pharmacol 204:18–26

    Article  Google Scholar 

  15. Xing MW, Zhao PP, Guo GY, Guo Y, Zhang KX, Tian L, He Y, Chai HL, Zhang W (2015) Inflammatory factor alterations in the gastrointestinal tract of cocks overexposed to arsenic trioxide. Biol Trace Elem Res. doi:10.1007/s12011-015-0305-8

    Google Scholar 

  16. Li ZH, Srivastava P (2004) Heat-shock proteins. Curr Protoc Immunol. doi:10.1002/0471142735.ima01ts58

    PubMed  Google Scholar 

  17. Mahmood K, Jadoon S, Mahmood Q, Irshad M, Hussain J (2014) Synergistic effects of toxic elements on heat shock proteins. Biomed Res Int 564136. doi:10.1155/2014/564136

  18. Kammenga JE, Arts MSJ, Oude-Breuil WJM (1998) HSP60 as a potential biomarker of toxic stress in the nematode plectus acuminatus. Arch Environ Contam Toxicol 34(3):253–258

    Article  CAS  PubMed  Google Scholar 

  19. Rajeshkumar S, Mini J, Munuswamy N (2013) Effects of heavy metals on antioxidants and expression of HSP70 in different tissues of Milk fish (Chanos chanos) of Kaattuppalli Island, Chennai, India. Ecotoxicol Environ Saf 98:8–18

    Article  CAS  PubMed  Google Scholar 

  20. Ramaglia V, Harapa GM, White N, Buck LT (2004) Bacterial infection and tissue-specific Hsp72, −73 and −90 expression in western painted turtles. Comp Biochem Physiol, Part C 138:139–148

    Google Scholar 

  21. Lee J, Lim KT (2012) Inhibitory effect of SJSZ glycoprotein (38 kDa) on expression of heat shock protein 27 and 70 in chromium (VI)-treated hepatocytes. Mol Cell Biochem 359:45–57

    Article  CAS  PubMed  Google Scholar 

  22. Chen X, Zhu YH, Cheng XY, Zhang ZW, Xu SW (2012) The protection of selenium against cadmium-induced cytotoxicity via the heat shock protein pathway in chicken splenic lymphocytes. Molecules 17:14565–14572

    Article  CAS  PubMed  Google Scholar 

  23. Wang M, Fu HJ, Xiao YM, Ai BM, Wei Q, Wang SY, Liu T, Ye LQ, Hu QS (2013) Effects of low-level organic selenium on lead-induced alterations in neural cell adhesion molecules. Brain Res 1530:76–81

    Article  CAS  PubMed  Google Scholar 

  24. Abdollahi M, Jirdeh NR, Soltaninejad K (2001) Protection by selenium of lead-acetate induced alterations on rat submandibular gland function. Human Exp Toxicol 20:28–33

    Article  CAS  Google Scholar 

  25. Han XJ, Xiao YM, Ai BM, Hu XX, Wei Q, Hu QS (2014) Effects of organic selenium on lead-induced impairments of spatial learning and memory as well as synaptic structural plasticity in rats. Biol Pharm Bull 37(3):466–474

    Article  CAS  PubMed  Google Scholar 

  26. Vengris VE, Mare CJ (1974) Lead poisoning in chickens and the effect of lead on interferon and antibody production. Can J Comp Med 38:328–335

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Klaassen CD, Amdur MO, Doull J (2013) Casarett & Doull’s Toxicology: the basic science of poisons

  28. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9), e45. doi:10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu EF, Zhang EL, Li K, Nath B, Li YL, Shen J (2013) Historical reconstruction of atmospheric lead pollution in central Yunnan province, southwest China: an analysis based on lacustrine sedimentary records. Environ Sci Pollut Res 20:8739–8750

    Article  CAS  Google Scholar 

  30. Walravena N, Van Os BJH, Klaver GT, Middelburg JJ, Davies GR (2014) The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in The Netherlands. Sci Total Environ 472:888–900

    Article  Google Scholar 

  31. Ramesh GT, Manna SK, Aggarwal BB, Jadhav AL (1999) Lead activates nuclear transcription factor-κB, activator protein-1, and amino-terminal c-Jun kinase in pheochromocytoma cells. Toxicol Appl Pharmacol 155:280–286

    Article  CAS  PubMed  Google Scholar 

  32. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res 480–481:243–268

    Article  PubMed  Google Scholar 

  33. Speyer CL, Neff TA, Warner RL, Guo RF, Sarma JV, Riedemann NC, Murphy ME, Murphy HS, Ward PA (2003) Regulatory effects of iNOS on acute lung inflammatory responses in mice. Am J Pathol 163(6):2319–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kanwar JR, Kanwar RK, Burrow H, Baratchi S (2009) Recent advances on the roles of NO in cancer and chronic inflammatory disorders. Curr Med Chem 16:2373–2394

    Article  CAS  PubMed  Google Scholar 

  35. Barbhuiya SASK, Chakraborty S, Sengupta M (2013) Studies of lead toxicity on inflammatory damage and innate immune functions in testicular macrophages of male Swiss albino mice. Modern Res Inflamm 2(4):75–81

    Article  Google Scholar 

  36. Kumawat KL, Kaushik DK, Goswami P, Basu A (2014) Acute exposure to lead acetate activates microglia and induces subsequent bystander neuronal death via caspase-3 activation. NeuroToxicology 41:143–153

    Article  CAS  PubMed  Google Scholar 

  37. Chang WC, Chang CC, Wang YS, Wang YS, Weng WT, Yoshiok T, Juo SHH (2011) Involvement of the epidermal growth factor receptor in Pb2+-induced activation of cPLA2/COX-2 genes and PGE2 production in vascular smooth muscle cells. Toxicology 279:45–53

    Article  CAS  PubMed  Google Scholar 

  38. Govindarajan TR, Jadhav AL (2001) Levels of protein kinase C and nitric oxide synthase activity in rats exposed to sub chronic low level lead. Mol Cell Biochem 223:27–33

    Article  Google Scholar 

  39. Kiyoto S, Yan D, Kenzo O (2005) Enhanced expression of heat shock proteins in gradually dying cells and their release from necrotically dead cells. Exp Cell Res 310:229–236

    Article  Google Scholar 

  40. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  41. Yang QL, Yao CL, Wang ZY (2012) Acute temperature and cadmium stress response characterization of small heat shock protein 27 in large yellow croaker, Larimichthys crocea. Comp Biochem Physiol, Part C 155:190–197

    CAS  Google Scholar 

  42. Guo Y, Zhao PP, Guo GY, Hu ZB, Tian L, Zhang KX, Sun Y, Zhang XG, Zhang W, Xing MW (2015) Effects of arsenic trioxide exposure on heat shock protein response in the immune organs of chickens. Biol Trace Elem Res. doi:10.1007/s12011-015-0389-1

    Google Scholar 

  43. Chander K, Vaibhav K, Ahmeda ME, Javed H, Tabassum R, Khan A, Kumar M, Katyal A, Islam F, Siddiqui MS (2014) Quercetin mitigates lead acetate-induced behavioral and histological alterations via suppression of oxidative stress, Hsp-70, Bak and upregulation of Bcl-2. Food Chem Toxicol 68:297–306

    Article  CAS  PubMed  Google Scholar 

  44. Köhler HR, Alberti G, Seniczak S, Seniczak A (2005) Lead-induced hsp70 and hsp60 pattern transformation and leg malformation during postembryonic development in the oribatid mite, Archegozetes longisetosus Aoki. Comp Biochem Physiol, Part C 141:398–405

    Google Scholar 

  45. Zhao FQ, Zhang ZW, Wang C, Zhang B, Yao HD, Li S, Xu SW (2013) The role of heat shock proteins in inflammatory injury induced by cold stress in chicken hearts. Cell Stress Chaperones 18(6):773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao FQ, Zhang ZW, Qu JP, Yao HD, Li M, Li S, Xu SW (2014) Cold stress induces antioxidants and Hsps in chicken immune organs. Cell Stress Chaperones 19:635–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yao HD, Wu Q, Zhang ZW, Zhang JL, Li S, Huang JQ, Ren FZ, Xu SW, Wang XL, Lei XG (2013) Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of Se-deficient chicks. J Nutr 143(5):613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang ZH, Khoso PA, Yao HD, Zhang ZW, Zhang XY, Xu SW (2015) SelW regulates inflammation-related cytokines in response to H2O2 in Se-deficient chicken liver. RSC Adv 5:37896–37905

    Article  CAS  Google Scholar 

  49. Liu CP, Fu J, Liu C, Li S (2015) The role of nitric oxide and autophagy in liver injuries induced by selenium deficiency in chickens. RSC Adv 5:50549–50556

    Article  CAS  Google Scholar 

  50. Yu J, Yao HD, Gao XJ, Zhang ZW, Wang JF, Xu SW (2015) The role of nitric oxide and oxidative stress in intestinal damage induced by selenium deficiency in chickens. Biol Trace Elem Res 163(1–2):144–153

    Article  CAS  PubMed  Google Scholar 

  51. Sheng PF, Jiang Y, Zhang ZW, Zhang JL, Li S, Zhang ZQ, Xu SW (2014) The effect of Se-deficient diet on gene expression of inflammatory cytokines in chicken brain. Biometals 27:33–43

    Article  CAS  PubMed  Google Scholar 

  52. Yang ZJ, Liu C, Zheng WJ, Teng XH, Li S (2015) The functions of antioxidants and heat shock proteins Are altered in the immune organs of selenium-deficient broiler chickens. Biol Trace Elem Res. doi:10.1007/s12011-015-0407-3

    Google Scholar 

  53. Xu T, Gao XJ, Liu GW (2015) The antagonistic effect of selenium on lead toxicity is related to the Ion profile in chicken liver. Biol Trace Elem Res. doi:10.1007/s12011-015-0422-4

    PubMed Central  Google Scholar 

  54. Liu LL, Li C, Zhang ZW, Zhang J, Yao HD, Xu SW (2014) Protective effects of selenium on cadmium-induced brain damage in chickens. Biol Trace Elem Res 158:176–185

    Article  CAS  PubMed  Google Scholar 

  55. Liu S, Xu F, Fu J, Li S (2015) Protective roles of selenium on nitric oxide and the gene expression of inflammatory cytokines induced by cadmium in chicken splenic lymphocytes. Biol Trace Elem Res. doi:10.1007/s12011-015-0354-z

    Google Scholar 

  56. Xu Z, Wang Z, Li JJ, Chen C, Zhang PC, Dong L, Chen JH, Chen Q, Zhang XT, Wang ZL (2013) Protective effects of selenium on oxidative damage and oxidative stress related gene expression in rat liver under chronic poisoning of arsenic. Food Chem Toxicol 58:1–7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was funded by the Doctoral Program Foundation of Institutions of Higher Education of China (No. 2010RCB32), the Scientific Research Projects of Education Department of Heilongjiang Province (No. 12541006), and the Heilongjiang Province on Natural Fund Project (No. 41400172-4-14089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Li or Xiaohua Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, S. & Teng, X. The Antagonistic Effect of Selenium on Lead-Induced Inflammatory Factors and Heat Shock Proteins mRNA Expression in Chicken Livers. Biol Trace Elem Res 171, 437–444 (2016). https://doi.org/10.1007/s12011-015-0532-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0532-z

Keywords

Navigation