Skip to main content
Log in

Green Synthesis of Oxovanadium(IV)/chitosan Nanocomposites and Its Ameliorative Effect on Hyperglycemia, Insulin Resistance, and Oxidative Stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this paper, the preparation, characterization, and ameliorative effect on high-fat high-sucrose diet-induced hyperglycemia, insulin resistance, oxidative stress in mice of novel oxovanadium(IV)/chitosan (OV/CS) nanocomposites were investigated. The nanobiocomposite was produced by chemical reduction by chitosan and L-ascorbic acid using microwave heating, under environment-friendly conditions, using aqueous solutions, and notably, by using both mediators as reducing and stabilizing agents. In addition, OV/CS nanocomposites were characterized by transmission electron microscopy, energy dispersive spectroscopy, particle size, and zeta potential measurements. In vivo experiments were designed to examine whether the OV/CS nanocomposites would provide additional benefits on oxidative stress, hyperglycemia, and insulin resistance in mice with type 2 diabetes. The results rendered insulin resistant by treating with OV/CS nanocomposites alleviate insulin resistance and improve oxidative stress. Such nanocomposite seem to be a valuable therapy to achieve and/or maintain glycemic control and therapeutic agents in the treatment arsenal for insulin resistance and type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lin Y, Sun Z (2010) Current views on type 2 diabetes. J Endocrinol 204(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lee HW, Park YS, Choi JW, Yi SY, Shin WS (2003) Antidiabetic effects of chitosan oligosaccharides in neonatal streptozotocin-induced noninsulin-dependent diabetes mellitus in rats. Biol Pharm Bull 26(8):1100–1103

    Article  PubMed  CAS  Google Scholar 

  3. Genet S, Kale RK, Baquer NZ (2002) Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonellafoenum graecum). Mol Cell Biochem 236(1-2):7–12

    Article  PubMed  CAS  Google Scholar 

  4. Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C (2009) Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem 103(4):554–558

    Article  PubMed  CAS  Google Scholar 

  5. Wang ZQ, Cefalu WT (2010) Current concepts about chromium supplementation in type 2 diabetes and insulin resistance. Curr Diab Rep 10(2):145–151

    Article  PubMed  CAS  Google Scholar 

  6. Barbagallo M, Dominguez LJ (2007) Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys 458(1):40–47

    Article  PubMed  CAS  Google Scholar 

  7. Yoshikawa Y, Ueda E, Miyake H, Sakurai H, Kojima Y (2001) Insulinomimetic bis(maltolato)zinc(II) complex: blood glucose normalizing effect in KK-A(y) mice with type 2 diabetes mellitus. Biochem Biophys Res Commun 281(5):1190–1193

    Article  PubMed  CAS  Google Scholar 

  8. Alkaladi A, Abdelazim AM, Afifi M (2014) Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int J Mol Sci 15(2):2015–2023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Xu Y, Wang L, Li YK, Wang CQ (2014) Oxidation and pH responsive nanoparticles based on ferrocene-modified chitosan oligosaccharide for 5-fluorouracil delivery. Carbohydr Polym 114:27–35

    Article  PubMed  CAS  Google Scholar 

  10. Li Q, Hu X, Bai Y, Alattar M, Ma D, Cao Y, Hao Y, Wang L, Jiang C (2013) The oxidative damage and inflammatory response induced by lead sulfide nanoparticles in rat lung. Food Chem Toxicol 60:213–217

    Article  PubMed  CAS  Google Scholar 

  11. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28

    Article  PubMed  CAS  Google Scholar 

  12. Phoempoon P, Sikong L (2014) Phase transformation of VO2 nanoparticles assisted by microwave heating. Sci World J 2014:841418

    Article  CAS  Google Scholar 

  13. Liao X-H, Zhu J-J, Chen H-Y (2001) Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution. Mater Sci Eng B 85(1):85–89

    Article  Google Scholar 

  14. van der Lubben IM, Verhoef JC, Borchard G, Junginger HE (2001) Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 14(3):201–207

    Article  PubMed  Google Scholar 

  15. Baran EJ, Ferrer EG, Williams PAM (1995) Interaction of the vanadyl(IV) cation with ascorbic acid and related systems. J Inorg Biochem 59(2–3):600

    Article  Google Scholar 

  16. Ferrer EG, Baran EJ (2001) Reduction of vanadium(V) with ascorbic acid and isolation of the generated oxovanadium(IV) species. Biol Trace Elem Res 83(2):111–119

    Article  PubMed  CAS  Google Scholar 

  17. Hu S, Chang Y, Wang J, Xue C, Li Z, Wang Y (2013) Fucosylated chondroitin sulfate from sea cucumber in combination with rosiglitazone improved glucose metabolism in the liver of the insulin-resistant mice. Biosci Biotechnol Biochem 77(11):2263–2268

    Article  PubMed  CAS  Google Scholar 

  18. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  PubMed  CAS  Google Scholar 

  19. Maier CM, Chan PH (2002) Role of superoxide dismutases in oxidative damage and neurodegenerative disorders. Neuroscientist 8(4):323–334

    Article  PubMed  CAS  Google Scholar 

  20. Johansson LH, Håkan Borg LA (1988) A spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem 174(1):331–336

    Article  PubMed  CAS  Google Scholar 

  21. Baker MA, Cerniglia GJ, Zaman A (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190(2):360–365

    Article  PubMed  CAS  Google Scholar 

  22. Forstrom JW, Zakowski JJ, Tappel AL (1978) Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry 17(13):2639–2644

  23. Cortizo AM, Molinuevo MS, Barrio DA, Bruzzone L (2006) Osteogenic activity of vanadyl(IV)-ascorbate complex: evaluation of its mechanism of action. Int J Biochem Cell Biol 38(7):1171–1180

    Article  PubMed  CAS  Google Scholar 

  24. Jansson-Charrier M, Guibal E, Roussy J, Delanghe B, Cloirec PL (1996) Vanadium (IV) sorption by chitosan: kinetics and equilibrium. Water Res 30(95):465–475

    Article  CAS  Google Scholar 

  25. Baran EJ (2008) Spectroscopic investigation of the VO2+/chitosan interaction. Carbohydr Polym 74(3):704–706

    Article  CAS  Google Scholar 

  26. Lichawska ME, Bodek KH, Jezierska J, Kufelnicki A (2014) Coordinative interaction of microcrystalline chitosan with oxovanadium (IV) ions in aqueous solution. Chem Cent J 8(34):10785–10791

    Google Scholar 

  27. Kumbicak U, Cavas T, Cinkilic N, Kumbicak Z, Vatan O, Yilmaz D (2014) Evaluation of in vitro cytotoxicity and genotoxicity of copper-zinc alloy nanoparticles in human lung epithelial cells. Food Chem Toxicol 73:105–112

    Article  PubMed  CAS  Google Scholar 

  28. Gao F-P, Zhang H-Z, Liu L-R, Wang Y-S, Jiang Q, Yang X-D, Zhang Q-Q (2008) Preparation and physicochemical characteristics of self-assembled nanoparticles of deoxycholic acid modified-carboxymethyl curdlan conjugates. Carbohydr Polym 71(4):606–613

    Article  CAS  Google Scholar 

  29. Bhumkar D, Joshi H, Sastry M, Pokharkar V (2007) Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 24(8):1415–1426

    Article  PubMed  CAS  Google Scholar 

  30. Sugano M, Fujikawa T, Hiratsuji Y, Nakashima K, Fukuda N, Hasegawa Y (1980) A novel use of chitosan as a hypocholesterolemic agent in rats. Am J Clin Nutr 33(4):787–793

    PubMed  CAS  Google Scholar 

  31. Pessin JE, Kwon H (2013) Adipokines mediate inflammation and insulin resistance. Front Endocrinol 4:71

  32. Hu S, Xia G, Wang J, Wang Y, Li Z, Xue C (2014) Fucoidan from sea cucumber protects against high-fat high-sucrose diet-induced hyperglycaemia and insulin resistance in mice. J Funct Foods 10:128–13

    Article  CAS  Google Scholar 

  33. Gan L, Guo K, Cremona ML, McGraw TE, Leibel RL, Zhang Y (2012) TNF-α up-regulates protein level and cell surface expression of the leptin receptor by dtimulating its export via a PKC-dependent mechanism. Endocrinology 153(12):5821–5833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hsieh YL, Yao HT, Cheng RS, Chiang MT (2012) Chitosan reduces plasma adipocytokines and lipid accumulation in liver and adipose tissues and ameliorates insulin resistance in diabetic rats. J Med Food 15(5):453–460

    Article  PubMed  CAS  Google Scholar 

  35. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112(12):1821–1830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440(7086):944–948

    Article  PubMed  CAS  Google Scholar 

  37. Miura T, Usami M, Tsuura Y, Ishida H, Seino Y (1995) Hypoglycemic and hypolipidemic effect of chitosan in normal and neonatal streptozotocin-induced diabetic mice. Biol Pharm Bull 18(11):1623–1625

    Article  PubMed  CAS  Google Scholar 

  38. Lapenna D, Ciofani G, Bruno C, Pierdomenico SD, Giuliani L, Giamberardino MA, Cuccurullo F (2002) Vanadyl as a catalyst of human lipoprotein oxidation. Biochem Pharmacol 63(3):375–380

    Article  PubMed  CAS  Google Scholar 

  39. Kurt O, Ozden TY, Ozsoy N, Tunali S, Can A, Akev N, Yanardag R (2011) Influence of vanadium supplementation on oxidative stress factors in the muscle of STZ-diabetic rats. Biometals 24(5):943–949

    Article  PubMed  CAS  Google Scholar 

  40. Chakraborty D, Bhattacharyya A, Majumdar K, Chatterjee GC (1977) Effects of chronic vanadium pentoxide administration on L-ascorbic acid metabolism in rats: influence of L-ascorbic acid supplementation. Int J Vitam Nutr Res 47(1):81–87

    PubMed  CAS  Google Scholar 

  41. Kanauchi O, Deuchi K, Imasato Y, Shizukuishi M, Kobayashi E (1995) Mechanism for the inhibition of fat digestion by chitosan and for the synergistic effect of ascorbate. Biosci Biotechnol Biochem 59(5):786–790

    Article  PubMed  CAS  Google Scholar 

  42. Decorde K, Teissedre PL, Sutra T, Ventura E, Cristol JP, Rouanet JM (2009) Chardonnay grape seed procyanidin extract supplementation prevents high-fat diet-induced obesity in hamsters by improving adipokine imbalance and oxidative stress markers. Mol Nutr Food Res 53(5):659–666

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the College of Food Science and Engineering, Ocean University of China for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Jie or Changhu Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jie, X., Guo, Y. et al. Green Synthesis of Oxovanadium(IV)/chitosan Nanocomposites and Its Ameliorative Effect on Hyperglycemia, Insulin Resistance, and Oxidative Stress. Biol Trace Elem Res 169, 310–319 (2016). https://doi.org/10.1007/s12011-015-0420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0420-6

Keywords

Navigation