Skip to main content

Advertisement

Log in

Selenium as a Feed Supplement for Heat-Stressed Poultry: a Review

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 02 April 2015

Abstract

Heat stress is associated with compromised performance and productivity in poultry due to declines in feed intake, nutrient utilization, growth rate, egg production and quality, and feed efficiency. Emerging evidences have shown that acute heat exposure results in increased production of free radicals and causes oxidative damage to lipids, proteins, and DNA. Additionally, heat stress can influence immune response by changing the expression of cytokines and by making the immune cells more susceptible to oxidative stress. Selenium, as a part of specific selenoproteins, can help to maintain antioxidant defenses, thereby preventing damages to tissues. An optimum response with supplementation of selenium in diet has been found to improve feed intake, body weight gain, feed efficiency, egg production and quality, and antioxidant status in heat-stressed poultry. Selenium compounds are also known to improve immune responses by altering the production of certain cytokines secreted by cells of the immune system and by enhancing the resistance of the immune cells to oxidative stress. It was reported that selenium supplementation had inhibitory effects on tumor necrosis factor alpha levels in heat-stressed broiler chicks, but the details are not completely elucidated. In the present review, the effect of selenium on production performance, nutrient utilization, antioxidative status, and immune responses of heat-stressed poultry is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bartlett JR, Smith MO (2003) Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poult Sci 82:1580–1588

    Article  CAS  PubMed  Google Scholar 

  2. Mujahid A, Yoshiki Y, Akiba Y, Toyomizu M (2005) Superoxide radical production in chicken skeletal muscle induced by acute heat stress. Poult Sci 84:307–314

    Article  CAS  PubMed  Google Scholar 

  3. Yardibi H, Turkay G (2008) The effects of vitamin E on the antioxidant system, egg production and egg quality in heat-stressed laying hen. Turk J Vet Anim Sci 32:319–325

    CAS  Google Scholar 

  4. Mujahid A, Akiba Y, Toyomizu M (2009) Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle. Am J Physiol Regul Integ Comp Physiol 297:R690–R698

    Article  CAS  Google Scholar 

  5. Azad MAK, Kikusato M, Maekawa T, Shirakawa H, Toyomizu M (2010) Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comp Biochem Physiol A 155:401–406

    Article  CAS  Google Scholar 

  6. Yang L, Tan GY, Fu YQ, Feng JH, Zhang MH (2010) Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comp Biochem Physiol C 151:204–208

    Google Scholar 

  7. Mujahid A, Pumford N, Bottje W, Akiba Y, Toyomizu M (2007) Mitochondrial oxidative damage in chicken skeletal muscle induced by acute heat stress. J Poult Sci 44:439–445

    Article  CAS  Google Scholar 

  8. Zulkifli I, Norma MT, Israf DA, Omar AR (2000) The effect of early age feed restriction on subsequent response to high environmental temperatures in female broiler chickens. Poult Sci 79:1401–1407

    Article  CAS  PubMed  Google Scholar 

  9. Niu ZY, Liu FZ, Yan QL, Li L (2009) Effects of different levels of selenium on growth performance and immunocompetence of broilers under heat stress. Arc Anim Nutr 63:56–65

    Article  CAS  Google Scholar 

  10. Habibian M, Ghazi S, Moeini MM, Abdolmohammadi A (2014) Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions. Int J Biometeorol 58:741–752

  11. Mashaly MM, Hendricks GL, Kalama MA, Gehad AE, Abbas AO, Patterson PH (2004) Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult Sci 83:889–894

    Article  CAS  PubMed  Google Scholar 

  12. Aengwanich W (2008) Pathological changes and effect of ascorbic acid on lesion scores of bursa of Fabricius in broilers under chronic heat stress. Res J Vet Sci 1:62–66

    Article  Google Scholar 

  13. Xu D, Li W, Huang Y, He J, Tian Y (2014) The effect of selenium and polysaccharide of Atractylodes macrocephala Koidz. (PAMK) on immune response in chicken spleen under heat stress. Biol Trace Elem Res 160:232–237

    Article  CAS  PubMed  Google Scholar 

  14. Sahin K, Sahin N, Kucuk O, Hayirli A, Prasad AS (2009) Role of dietary zinc in heat-stressed poultry: a review. Poult Sci 88:2176–2183

    Article  CAS  PubMed  Google Scholar 

  15. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  16. Zhou J, Huang K, Lei XG (2013) Selenium and diabetes—evidence from animal studies. Free Radic Biol Med 65:1548–1556

    Article  CAS  PubMed  Google Scholar 

  17. Nazıroğlu M, Yıldız K, Tamtürk B, Erturan İ, Flores-Arce M (2012) Selenium and psoriasis. Biol Trace Elem Res 150:3–9

    Article  PubMed  Google Scholar 

  18. Nazıroğlu M, Yürekli VA (2013) Effects of antiepileptic drugs on antioxidant and oxidant molecular pathways: focus on trace elements. Cell Mol Neurobiol 33:589–599

    Article  PubMed  Google Scholar 

  19. Nazıroğlu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191

    Article  PubMed  Google Scholar 

  20. Özgül C, Nazıroğlu M (2012) TRPM2 channel protective properties of N-acetylcysteine on cytosolic glutathione depletion dependent oxidative stress and Ca2+ influx in rat dorsal root ganglion. Physiol Behav 106:122–128

    Article  PubMed  Google Scholar 

  21. Néve J (1996) Selenium as a risk factor for cardiovascular diseases. J Cardiovasc Risk 3:42–47

    Article  PubMed  Google Scholar 

  22. Ghazi S, Habibian M, Moeini MM, Abdolmohammadi A (2012) Effects of dietary selenium, vitamin E, and their combination on growth, serum metabolites, and antioxidant defense system in skeletal muscle of broilers under heat stress. Biol Trace Elem Res 148:322–330

    Article  Google Scholar 

  23. Arthur JR, Nicol F, Beckett GJ (1993) Selenium deficiency, thyroid hormone metabolism, and thyroid hormone deiodinases. Am J Clin Nutr 57:236S–239S

    CAS  PubMed  Google Scholar 

  24. Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130:1653–1656

    CAS  PubMed  Google Scholar 

  25. Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599

    Article  CAS  PubMed  Google Scholar 

  26. Bunk MJ, Combs GF (1980) Effect of selenium on appetite in the selenium-deficient chick. J Nutr 110:743–749

    CAS  PubMed  Google Scholar 

  27. Fischer J, Bosse A, Most E, Mueller A, Pallauf J (2008) Selenium requirement of growing male turkeys. Br Poult Sci 49:583–591

    Article  CAS  PubMed  Google Scholar 

  28. Supplee WC (1966) Feather abnormality in poults fed a diet deficient in vitamin E and selenium. Poult Sci 45:852–854

    Article  CAS  PubMed  Google Scholar 

  29. Thompson JN, Scott ML (1969) Role of selenium in the nutrition of the chick. J Nutr 97:335–342

    CAS  PubMed  Google Scholar 

  30. Edens FW, Carter TA, Parkhurst CR, Sefton AE (2000) Effect of selenium source and litter type on broiler feathering. J Appl Poult Res 9:407–413

    Article  CAS  Google Scholar 

  31. Turan B, Balcik C, Akkas N (1997) Effect of dietary selenium and vitamin E on the biomechanical properties of rabbit bones. Clin Rheumatol 16:441–449

    Article  CAS  PubMed  Google Scholar 

  32. O’Toole D, Raisbeck MF (1997) Experimentally induced selenosis of adult mallard ducks: clinical signs, lesions and toxicology. Vet Pathol 34:330–340

    Article  PubMed  Google Scholar 

  33. Stanaćev V, Božić A, Kovčin S, Perić L (2006) Effect of copper on the performances of broilers and accumulation in liver. Luc Stiint Zooteh Biotehnol 39:359–366

    Google Scholar 

  34. Cantor AH, Moorhead PD, Musser MA (1982) Comparative effects of sodium selenite and selenomethionine upon nutritional muscular dystrophy, selenium-dependent glutathione peroxidase, and tissue selenium concentrations of turkey poults. Poult Sci 61:478–484

    Article  CAS  PubMed  Google Scholar 

  35. NRC (1994) Nutrient requirements of poultry, 9th edn. National Academy, Washington, p 20

    Google Scholar 

  36. Choct MA, Naylor J, Reinke N (2004) Selenium supplementation affects broiler growth performance, meat yield and feather coverage. Br Poult Sci 45:677–683

    Article  CAS  PubMed  Google Scholar 

  37. Payne RL, Southern LL (2005) Comparison of inorganic and organic selenium sources for broilers. Poult Sci 84:898–902

    Article  CAS  PubMed  Google Scholar 

  38. Nollet L, Huyghebaert G, Spring P (2008) Effect of different levels of dietary organic (Bioplex) trace minerals on live performance of broiler chickens by growth phases. J Appl Poult Res 17:109–115

    Article  CAS  Google Scholar 

  39. Yang YR, Meng FC, Wang P, Jiang YB, Yin QQ, Chang J, Zuo RY, Zheng QH, Liu JX (2014) Effect of organic and inorganic selenium supplementation on growth performance, meat quality and antioxidant property of broilers. Afr J Biotechnol 11:3031–3036

    Google Scholar 

  40. Sunde RA (1997) Selenium. In: O’Dell BL, Sunde RA (eds) Handbook of nutritionally essential mineral elements. Marcel Dekker, New York, pp 493–556

    Google Scholar 

  41. Stewart RDH, Griffiths NM, Thomson CD, Robinson MF (1987) Quantitative selenium metabolism in normal New Zealand women. Br J Nutr 40:45–54

    Article  Google Scholar 

  42. Fairweather-Tait S (1997) Bioavailability of selenium. Eur J Clin Nutr 51:S20–S23

    Article  PubMed  Google Scholar 

  43. Choct M, Naylor AJ (2004) The effect of dietary selenium and vitamin E levels on performance of male broilers. Asian-Aust J Anim Sci 17:1000–1006

    Article  CAS  Google Scholar 

  44. Thomson CD (1998) Selenium speciation in human body fluids. Analyst 123:827–831

    Article  CAS  PubMed  Google Scholar 

  45. Kim YY, Mahan DC (2001) Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing–finishing pigs. J Anim Sci 79:942–948

    CAS  PubMed  Google Scholar 

  46. Kuricova S, Boldizarova K, Gresakova L, Bobcek R, Levkut M, Leng L (2003) Chicken selenium status when fed a diet supplemented with Se–yeast. Act Vet Brno 72:339–346

    Article  CAS  Google Scholar 

  47. Chadio SE, Kotsampasi BM, Menegatos JG, Zervas GP, Kalogiannis DG (2006) Effect of selenium supplementation on thyroid hormone levels and selenoenzyme activities in growing lambs. Biol Trace Elem Res 109:145–154

    Article  CAS  PubMed  Google Scholar 

  48. Hill KE, Burk RF (1982) Effect of selenium deficiency and vitamin E deficiency on glutathione metabolism in isolated rat hepatocytes. J Biol Chem 257:10668–10672

    CAS  PubMed  Google Scholar 

  49. Mujahid A, Sato K, Akiba Y, Toyomizu M (2006) Acute heat stress stimulates mitochondrial superoxide production in broiler skeletal muscle, possibly via downregulation of uncoupling protein content. Poult Sci 85:1259–1265

    Article  CAS  PubMed  Google Scholar 

  50. Stapleton SR (2000) Selenium: an insulin-mimetic. Cell Mol Life Sci 57:1874–1879

    Article  CAS  PubMed  Google Scholar 

  51. Da Silva ICM, Ribeiro AML, Canal CW, Trevizan L, Macagnan M, Gonçalves TA, Hlavac NRC, De Almeida LL, Pereira RA (2010) The impact of organic and inorganic selenium on the immune system of growing broilers submitted to immune stimulation and heat stress. Brazil J Poult Sci 12:247–254

    Google Scholar 

  52. Khajali F, Raei A, Aghaei A, Qujeq D (2010) Evaluation of a dietary organic selenium supplement at different dietary protein concentrations on growth performance, body composition and antioxidative status of broilers reared under heat stress. Asian-Aust J Anim Sci 23:501–507

    Article  CAS  Google Scholar 

  53. Rahimi S, Farhadi D, Valipouri AR (2011) Effect of organic and inorganic selenium sources and vitamin E on broiler performance and carcass characteristics in heat stress condition. Vet J 91:25–35

    Google Scholar 

  54. Sahin K, Kucuk O (2001) Effects of vitamin E and selenium on performance, digestibility of nutrients and carcass characteristics of Japanese quails reared under heat stress (34°C). J Anim Physiol Anim Nutr 85:342–348

    Article  CAS  Google Scholar 

  55. Ribeiro AML, Vogt LK, Canal CW, Laganá C, Streck AF (2008) Vitamins and organic minerals supplementation and its effect upon the immunocompetence of broilers submitted to heat stress. Revist Bras Zootec 37:636–644

    Article  Google Scholar 

  56. Siske V, Zeman L, Klecker D (2000) The egg shell: a case study in improving quality by altering mineral metabolism—naturally. In: Lyons TP, Jacques KA (eds) Biotechnology in the feed industry. Proceedings of Alltech’s 16th Annual Symposium. Nottingham University Press, Nottingham, pp 327

  57. Patton ND (2000) Organic selenium in the nutrition of laying hens: effects on egg selenium content, egg quality and transfer to developing chick embryos. Ph.D. dissertation, University of Kentucky

  58. Wakebe M (1998) Organic selenium and egg freshness. Feed for meat chickens and feed for laying hens. Patent no. 10-23864, Japanese Patent Office, Application Heisei 8-179629

  59. Sahin N, Onderci M, Sahin K, Kucuk O (2008) Supplementation with organic or inorganic selenium in heat-distressed quail. Biol Trace Elem Res 122:229–237

    Article  CAS  PubMed  Google Scholar 

  60. Zachara BA, Pawluk H, Bloch-Boguslawska E, Sliwka KM, Korenkiewicz J, Skok Z, Ryc K (2001) Tissue level, distribution, and total body selenium content in healthy and diseased humans in Poland. Arc Environ Health 56:461–466

    Article  CAS  Google Scholar 

  61. Schutze N, Bachthaler M, Lechner A, Kohrle J, Jakob F (1998) Identification by differential display PCR of the selenoprotein thioredoxin reductase as a 1 alpha, 25(OH)2-vitamin D3-responsive gene in human osteoblasts—regulation by selenite. Biofactors 7:299–310

    Article  CAS  PubMed  Google Scholar 

  62. Schutze N, Fritsche J, Ebert-Dumig R, Schneider D, Kohrle J, Andreesen R, Kreutz M, Jakob F (1999) The selenoprotein thioredoxin reductase is expressed in peripheral blood monocytes and THP1 human myeloid leukemia cells—regulation by 1,25-dihydroxyvitamin D3 and selenite. Biofactors 10:329–338

    Article  CAS  PubMed  Google Scholar 

  63. Mezes M, Lencses G (1985) Changes in vitamin E and lipid-peroxide status in the laying hen during egg shell formation. Act Vet Hung 33:33–39

    CAS  Google Scholar 

  64. Mezes M, Hidas A (1992) Is there lipid peroxidation induced malondialdehyde production during egg shell formation? Act Vet Hung 40:297–301

    CAS  Google Scholar 

  65. Seven PT (2008) The effects of dietary Turkish propolis and vitamin C on performance, digestibility, egg production and egg quality in laying hens under different environmental temperatures. Asian-Aust J Anim Sci 8:1164–1170

    Article  Google Scholar 

  66. Seven PT, Seven İ (2008) Effect of dietary Turkish propolis as alternative to antibiotic on performance and digestibility in broilers exposed to heat stress. J Appl Anim Res 34:193–196

    Article  Google Scholar 

  67. Hai L, Rong D, Zhang ZY (2000) The effect of thermal environment on the digestion of broilers. J Anim Physiol Anim Nutr 83:57–64

    Article  Google Scholar 

  68. Placha I, Takacova J, Ryzner M, Cobanova K, Laukova A, Strompfova V, Venglovska K, Faix S (2014) Effect of thyme essential oil and selenium on intestine integrity and antioxidant status of broilers. Br Poult Sci 55:105–114

    Article  CAS  PubMed  Google Scholar 

  69. Surai PF (2000) Effect of selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick. Br Poult Sci 41:235–243

    Article  CAS  PubMed  Google Scholar 

  70. Smith MO, Soisuvan K, Miller LC (2003) Evaluation of dietary calcium level and fat source on growth performance and mineral utilization of heat-distressed broilers. Int J Poult Sci 2:32–37

    Article  Google Scholar 

  71. Sahin K, Smith MO, Onderci M, Sahin N, Gursu MF, Kucuk O (2005) Supplementation of zinc from organic or inorganic source improves performance and antioxidant status of heat-distressed quail. Poult Sci 84:882–887

    Article  CAS  PubMed  Google Scholar 

  72. Sandercock DA, Hunter RR, Nute GR, Mitchell MA, Hocking PM (2001) Acute heat stress-induced alterations in blood acid–base status and skeletal muscle membrane integrity in broiler chickens at two ages: implications for meat quality. Poult Sci 80:418–425

    Article  CAS  PubMed  Google Scholar 

  73. Wang RR, Pan XJ, Peng ZQ (2009) Effects of heat exposure on muscle oxidation and protein functionalities of pectoralis majors in broiler. Poult Sci 88:1078–1084

    Article  CAS  PubMed  Google Scholar 

  74. Sahin K, Sahin N, Yaralioglu S, Onderci M (2002) Protective role of supplemental vitamin E and selenium on lipid peroxidation, vitamin E, vitamin A, and some mineral concentrations of Japanese quails reared under heat stress. Biol Trace Elem Res 85:59–70

    Article  CAS  PubMed  Google Scholar 

  75. Dlouhá G, Ševčikova S, Dokoupilova A, Zita L, Heindl J, Skřivan M (2008) Effect of dietary selenium sources on growth performance, breast muscle selenium, glutathione peroxidase activity and oxidative stability in broilers. Czech J Anim Sci 53:265–269

    Google Scholar 

  76. Miezeliene A, Alencikiene G, Gruzauskas R, Barstys T (2011) The effect of dietary selenium supplementation on meat quality of broiler chickens. Biotechnol Agron Soc Environ 15:61–69

    CAS  Google Scholar 

  77. Skřivan M, Marounek M, Englmaierova M, Skřivanova E (2012) Influence of dietary vitamin C and selenium, alone and in combination, on the composition and oxidative stability of meat of broilers. Food Chem 130:660–664

    Article  Google Scholar 

  78. Yang YR, Meng FC, Wang P, Jiang YB, Yin QQ, Chang J, Zuo RY, Zheng QH, Liu JX (2012) Effect of organic and inorganic selenium supplementation on growth performance, meat quality and antioxidant property of broilers. Afr J Biotechnol 11:3031–3036

    Article  CAS  Google Scholar 

  79. Rama Rao SV, Prakash B, Raju MVLN, Panda AK, Poonam S, Murthy OK (2013) Effect of supplementing organic selenium on performance, carcass traits, oxidative parameters and immune responses in commercial broiler chickens. Asian-Aust J Anim Sci 26:247–252

    Article  Google Scholar 

  80. Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL, Gladyshev VN (1999) Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J Biol Chem 274:24522–24530

    Article  CAS  PubMed  Google Scholar 

  81. Khan RU, Naz S, Nikousefat Z, Tufarelli V, Javdani M, Rana N, Laudadio V (2011) Effect of vitamin E in heat-stressed poultry. World’s Poult Sci J 67:469–477

    Article  Google Scholar 

  82. Noguchi T, Langevin ML, Combs GF, Scott AL (1973) Biochemical and histochemical studies of the selenium-deficient pancreas in chicks. J Nutr 103:444–453

    CAS  PubMed  Google Scholar 

  83. Singh H, Sodhi S, Kaur R (2006) Effects of dietary supplements of selenium, vitamin E or combinations of the two on antibody responses of broilers. Br Poult Sci 47:714–719

    Article  CAS  PubMed  Google Scholar 

  84. Skřivan M, Ševčikova S, Dlouhá G, Tůmova E, Ledvinka Z (2006) Enhancement of vitamin E and A in animal products. Patent application, office of Industrial Proprietorship, Czech Republic

    Google Scholar 

  85. Ševčikova S, Skřivan M, Dlouhá G, Koucky M (2006) The effect of selenium source on the performance and meat quality of broiler chickens. Czech J Anim Sci 51:449–457

    Google Scholar 

  86. Gross WB, Siegel HS (1983) Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis 27:972–978

    Article  CAS  PubMed  Google Scholar 

  87. McFarlane JM, Curtis SE (1989) Multiple concurrent stressors in chicks. 3. Effects on plasma corticosterone and the heterophil:lymphocyte ratio. Poult Sci 68:522–527

    Article  CAS  PubMed  Google Scholar 

  88. Thaxton P, Sadly CR, Glick B (1968) Immune response of chicken following heat exposure or injection with ACTH. Poult Sci 47:264–266

    Article  CAS  PubMed  Google Scholar 

  89. Qureshi MA, Miller L (1991) Comparison of macrophage function in several commercial broiler genetic lines. Poult Sci 70:2094–2101

    Article  CAS  PubMed  Google Scholar 

  90. Al-Mufarrej SI, Al-Bisher AAA, Hussein MF (1999) Effect of short-term heat stress on the immune function of chickens: a review. J King Saud University - Agr Sci 11:57–71

    Google Scholar 

  91. Lin H, Jiao HC, Buyse J, Decuypere E (2006) Strategies for preventing heat stress in poultry. World’s Poult Sci J 62:71–76

    Article  Google Scholar 

  92. Lara LJ, Rostagno MH (2013) Impact of heat stress on poultry production. Animals 3:356–369

    Article  Google Scholar 

  93. Arthur JR, McKenzie RC, Beckett GJ (2003) Selenium in the immune system. J Nutr 133:1457S–1459S

    CAS  PubMed  Google Scholar 

  94. Whitacre ME, Combs GF (1983) Selenium and mitochondrial integrity in the pancreas of the chick. J Nutr 113:1972–1983

    CAS  PubMed  Google Scholar 

  95. Schumacher LK, Roy M, Wishe MI, Cohen MW, Stotzky G (1990) Selenium and immune functions. 1. Effect on lymphocyte proliferation and production of interleukin 1 and interleukin 2. Proc Soc Exp Biol Med 193:136–141

    Article  Google Scholar 

  96. Look MP, Rockstroh JK, Rao GS, Kreuzer KA, Spengler U, Sauerbruch T (1997) Serum selenium versus lymphocyte subsets and markers of disease progression and inflammatory response in human immunodeficiency virus-infection. Biol Trace Elem Res 56:31–41

    Article  CAS  PubMed  Google Scholar 

  97. Marsh JA, Combs GF, Whitacre ME, Dietert RR (1986) Effect of selenium and vitamin E dietary deficiencies on chick lymphoid organ development. Proc Soc Exp Biol Med 182:425–436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Kurdistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Habibian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibian, M., Sadeghi, G., Ghazi, S. et al. Selenium as a Feed Supplement for Heat-Stressed Poultry: a Review. Biol Trace Elem Res 165, 183–193 (2015). https://doi.org/10.1007/s12011-015-0275-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0275-x

Keywords

Navigation