Skip to main content
Log in

Prediction of Selenoprotein T Structure and Its Response to Selenium Deficiency in Chicken Immune Organs

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenoprotein T (SelT) is associated with the regulation of calcium homeostasis and neuroendocrine secretion. SelT can also change cell adhesion and is involved in redox regulation and cell fixation. However, the structure and function of chicken SelT and its response to selenium (Se) remains unclear. In the present study, 150 1-day-old chickens were randomly divided into a low Se group (L group, fed a Se-deficient diet containing 0.020 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.2 mg/kg Se). The immune organs (spleen, thymus, and bursa of Fabricius) were collected at 15, 25, 35, 45, and 55 days of age. We performed a sequence analysis and predicted the structure and function of SelT. We also investigated the effects of Se deficiency on the expression of SelT, selenophosphate synthetase-1 (SPS1), and selenocysteine synthase (SecS) using RT-PCR and the oxidative stress in the chicken immune organs. The data showed that the coding sequence (CDS) and deduced amino acid sequence of SelT were highly similar to those of 17 other animals. Se deficiency induced lower (P < 0.05) levels of SelT, SPS1, and SecS, reduced the catalase (CAT) activity, and increased the levels of hydrogen peroxide (H2O2) and hydroxyl radical (–OH) in immune organs. In conclusion, the CDS and deduced amino acid sequence of chicken SelT are highly homologous to those of various mammals. The redox function and response to the Se deficiency of chicken SelT may be conserved. A Se-deficient diet led to a decrease in SelT, SecS, and SPS1 and induced oxidative stress in the chicken immune organs. To our knowledge, this is the first report of predictions of chicken SelT structure and function. The present study demonstrated the relationship between the selenoprotein synthases (SPS1, SecS) and SelT expression in the chicken immune organs and further confirmed oxidative stress caused by Se deficiency. Thus, the information presented in this study is helpful to understand chicken SelT structure and function. Meanwhile, the present research also confirmed the negative effects of Se deficiency on chicken immune organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lenz M, Lens PN (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407(12):3620–3633

    Article  CAS  PubMed  Google Scholar 

  2. Nazıroğlu M, Yıldız K, Tamtürk B et al (2012) Selenium and psoriasis. Biol Trace Elem Res 150(1–3):3–9

    PubMed  Google Scholar 

  3. Fatmi W, Kechrid Z, Nazıroğlu M et al (2013) Selenium supplementation modulates zinc levels and antioxidant values in blood and tissues of diabetic rats fed zinc-deficient diet. Biol Trace Elem Res 152(2):243–250

    Article  CAS  PubMed  Google Scholar 

  4. Lei C, Niu X, Ma X et al (2011) Is selenium deficiency really the cause of Keshan disease? Environ Geochem Health 33(2):183–188

    Article  CAS  PubMed  Google Scholar 

  5. Robinson M, Campbell D, Sutherland W et al (1983) Selenium and risk factors for cardiovascular disease in New Zealand. New Zealand Med J 96(741):755–757

    CAS  PubMed  Google Scholar 

  6. Demirci S, Kutluhan S, Nazıroğlu M et al (2013) Effects of selenium and topiramate on cytosolic Ca2+ influx and oxidative stress in neuronal PC12 cells. Neurochem Res 38(1):90–97

    Article  CAS  PubMed  Google Scholar 

  7. McKenzie RC, Rafferty TS, Beckett GJ (1998) Selenium: an essential element for immune function. Immunol Today 19(8):342–345

    Article  CAS  PubMed  Google Scholar 

  8. Hoffmann PR, Berry MJ (2008) The influence of selenium on immune responses. Mol Nutr Food Res 52(11):1273–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wilson CL, Mann J, Walsh M et al (2014) Quiescent hepatic stellate cells functionally contribute to the hepatic innate immune response via TLR3. PLoS One 9(1):e83391

    Article  PubMed Central  PubMed  Google Scholar 

  10. Oda SS, El-Maddawy ZK (2012) Protective effect of vitamin E and selenium combination on deltamethrin-induced reproductive toxicity in male rats. Exp Toxicol Pathol 64(7):813–819

    Article  CAS  PubMed  Google Scholar 

  11. Willett W, Steven Morris J, Pressel S et al (1983) Prediagnostic serum selenium and risk of cancer. Lancet 322(8342):130–134

    Article  Google Scholar 

  12. Hoffmann PR (2007) Mechanisms by which selenium influences immune responses. Arch Immunol Ther Exp 55(5):289–297

    Article  CAS  Google Scholar 

  13. Papp LV, Lu J, Holmgren A et al (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9(7):775–806

    Article  CAS  PubMed  Google Scholar 

  14. Leinfelder W, Zehelein E, MandrandBerthelot M et al (1988) Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine

  15. Hatfield DL, Tsuji PA, Carlson BA et al (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends in Biochemical Sciences

  16. Kryukov GV, Castellano S, Novoselov SV et al (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443

    Article  CAS  PubMed  Google Scholar 

  17. Reeves M, Hoffmann P (2009) The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 66(15):2457–2478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Pappas A, Zoidis E, Surai P et al (2008) Selenoproteins and maternal nutrition. Comp Biochem Physiol B Biochem Mol Biol 151(4):361–372

    Article  CAS  PubMed  Google Scholar 

  19. Grumolato L, Ghzili H, Montero-Hadjadje M et al (2008) Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion. FASEB J 22(6):1756–1768

    Article  CAS  PubMed  Google Scholar 

  20. Dikiy A, Novoselov SV, Fomenko DE et al (2007) SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry 46(23):6871–6882

    Article  CAS  PubMed  Google Scholar 

  21. Hoffmann PR, Höge SC, Li P-A et al (2007) The selenoproteome exhibits widely varying, tissue-specific dependence on selenoprotein P for selenium supply. Nucleic Acids Res 35(12):3963–3973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31(14):e73–e73

    Article  PubMed Central  PubMed  Google Scholar 

  23. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45–e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Weissman SM (1976) Red cell metabolism. a manual of biochemical methods. Yale J Biol Med 49(3):310

    PubMed Central  Google Scholar 

  25. Zhou B, Wang J, Guo Z et al (2006) A simple colorimetric method for determination of hydrogen peroxide in plant tissues. Plant Growth Regul 49(2–3):113–118

    Article  Google Scholar 

  26. Pascual C, Romay C (1992) Effect of antioxidants on chemiluminescence produced by reactive oxygen species. J Biolumin Chemilumin 7(2):123–132

    Article  CAS  PubMed  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  PubMed  Google Scholar 

  28. Sengupta A, Carlson BA, Labunskyy VM et al (2009) Selenoprotein T deficiency alters cell adhesion and elevates selenoprotein W expression in murine fibroblast cells. Biochem Cell Biol 87(6):953–961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Aachmann FL, Fomenko DE, Soragni A et al (2007) Solution structure of selenoprotein W and NMR analysis of its interaction with 14-3-3 proteins. J Biol Chem 282(51):37036–37044

    Article  CAS  PubMed  Google Scholar 

  30. Yao H-D, Wu Q, Zhang Z-W et al (2013) Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of SE-deficient chicks. J Nutr 143(5):613–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Huang J-Q, Li D-L, Zhao H et al (2011) The selenium deficiency disease exudative diathesis in chicks is associated with downregulation of seven common selenoprotein genes in liver and muscle. J Nutr 141(9):1605–1610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Sun B, Wang R, Li J et al (2011) Dietary selenium affects selenoprotein W gene expression in the liver of chicken. Biol Trace Elem Res 143(3):1516–1523

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt RL, Simonović M (2012) Synthesis and decoding of selenocysteine and human health. Croat Med J 53(6):535–550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wang R, Sun B, Zhang Z et al (2011) Dietary selenium influences pancreatic tissue levels of selenoprotein W in chickens. J Inorg Biochem 105(9):1156–1160

    Article  CAS  PubMed  Google Scholar 

  35. Xu X, Carlson B, Irons R et al (2007) Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochem J 404:115–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wang K-T, Wang J, Li L-F et al (2009) Crystal structures of catalytic intermediates of human selenophosphate synthetase 1. J Mol Biol 390(4):747–759

    Article  CAS  PubMed  Google Scholar 

  37. Özcelik D, Nazıroglu M, Tunçdemir M et al (2012) Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biol Trace Elem Res 150(1–3):342–349

    Article  PubMed  Google Scholar 

  38. Massafra C, Gioia D, De Felice C et al (2000) Effects of estrogens and androgens on erythrocyte antioxidant superoxide dismutase, catalase and glutathione peroxidase activities during the menstrual cycle. J Endocrinol 167(3):447–452

    Article  CAS  PubMed  Google Scholar 

  39. Yu D, Zhang Z-w, Yao H-d et al (2014) Antioxidative role of selenoprotein W in oxidant-induced chicken splenic lymphocyte death. BioMetals 27(2):277–291

    Article  CAS  PubMed  Google Scholar 

  40. Han Y-H, Zhang Z-W, Su J et al (2012) Effects of chicken selenoprotein W on H2O2-induced apoptosis in CHO-K1 cells. Biol Trace Elem Res 147(1–3):395–402

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Z-w, Wang Q-h, Zhang J-l et al (2012) Effects of oxidative stress on immunosuppression induced by selenium deficiency in chickens. Biol Trace Elem Res 149(3):352–361

    Article  CAS  PubMed  Google Scholar 

  42. Pigeolet E, Corbisier P, Houbion A et al (1990) Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev 51(3):283–297

    Article  CAS  PubMed  Google Scholar 

  43. Tate D, Miceli MV, Newsome DA (1995) Phagocytosis and H2O2 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 36(7):1271–1279

    PubMed  Google Scholar 

  44. Hansford RG, Hogue BA, Mildaziene V (1997) Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr 29(1):89–95

    Article  CAS  PubMed  Google Scholar 

  45. Nazıroğlu M (2012) Molecular role of catalase on oxidative stress-induced Ca2+ signaling and TRP cation channel activation in nervous system. J Recept Sig Transd 32(3):134–141

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Grant No. 31320103920).

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, L., Liu, C., Yang, Zj. et al. Prediction of Selenoprotein T Structure and Its Response to Selenium Deficiency in Chicken Immune Organs. Biol Trace Elem Res 160, 222–231 (2014). https://doi.org/10.1007/s12011-014-0049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0049-x

Keywords

Navigation