Skip to main content
Log in

Assessment of Microwave Cooking on the Bioaccessibility of Cadmium from Various Food Matrices Using an In Vitro Digestion Model

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Bioaccessibility represents the maximum amount of pollutant ingested with food that is available for intestinal absorption. The measurement of bioaccessibility can achieve a more accurate risk assessment. Thus, in this study, the bioaccessibility of raw/microwave-cooked store-bought food including carrot, potato, white radish, lotus root, sweet corn, long grain rice, soybean, fleshy prawn, eastern oyster, kelp, and common carp were investigated by applying an in vitro digestion method. A validated microwave digestion/ICP-MS method was applied for determining the concentration of Cd. In this study, the concentration of Cd ranged 3.7–215.8 μg/kg fw in which carrot contained the lowest Cd while the fleshy prawn contained the highest Cd. There are no statistical differences of Cd content in microwave-cooked food and raw food except potato, lotus root, and eastern oyster. Cd in most of the cooked food materials was less bioaccessible than in raw food except sweet corn, potato, and kelp. The bioaccessibility of Cd was around 100 % in either raw or cooked potatoes. Microwave cooking caused the decreasing of bioaccessibility around 0–68 %, depending on different food matrix. Maximal decreasing of Cd bioaccessibility occurred in common carp. Thus, microwave cooking could be a feasible strategy for decreasing Cd bioaccessibility. In addition, the Cd dissolution in oral, gastric, and small intestine phase was different in different food matrix. For most of the investigated food items, Cd was largely migrated either into the oral phase (carrot, potato, white radish, lotus root, raw soybean, kelp, and common carp) or into the gastric phase (sweet corn, cooked soybean, rice, fleshy prawn, and eastern oyster). Our findings will have significant implications for food processing aiming to decrease the absorption of Cd and risk assessment analysis improvements. Further study is needed to use the animal model to validate these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nordberg G, Jin TY, Bnernard A, Fierens S, Buchet JP, Ye TT, Kong QH, Wang HF (2002) Low bone density and renal dysfunction following environmental cadmium exposure in China. Ambio 31:478–481

    PubMed  Google Scholar 

  2. Nordberg G, Jin TY, Wu XW, Lu J, Chen L, Lei LJ, Hong F, Norberg M (2009) Prevalence of kidney dysfunction in humans—relationship to cadmium dose, metallothionein, immunological and metabolic factors. Biochimie 91:1282–1285

    Article  CAS  PubMed  Google Scholar 

  3. Moitra S, Blanc PD, Sahu S (2013) Adverse respiratory effects associated with cadmium exposure in small-scale jewellery workshops in India. Thorax 68:565–570

    Article  PubMed  Google Scholar 

  4. Thévenod F, Lee WK (2013) Toxicology of cadmium and its damage to mammalian organs. In: Sigel A, Sigel H, Sigel RKO (eds) Cadmium: from toxicity to essentiality. Springer, Dordrecht

    Google Scholar 

  5. Narkowicz S, Plotka J, Polkowska Z, Biziuk M, Namieśnik J (2013) Prenatal exposure to substance of abuse: a worldwide problem. Environ Int 54:141–163

    Article  CAS  PubMed  Google Scholar 

  6. FAO/WHO (2014) Joint FAO/WHO expert committee on food additive 73rd meeting. Http://whqlibdoc.who.int/trs/WHO_TRS_960_eng.pdf

  7. Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  Google Scholar 

  8. Oomen AG, Rompelberg CJM, Bruil MA, Dobbe CJG, Pereboom DPKH, Sips AJAM (2003) Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch Environ Contam Toxicol 44:281–287

    Article  CAS  PubMed  Google Scholar 

  9. Versantvoort CHM, Oomen AG, Van de Kamp E, Rompelberg CJM, Sips AJAM (2005) Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chem Toxicol 43:31–40

    Article  CAS  PubMed  Google Scholar 

  10. Amiard JC, Amiard-Triquet C, Charbonnier L, Mesnil A, Rainbow PS, Wang WX (2008) Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia. Food Chem Toxicol 46:2010–2022

    Article  CAS  PubMed  Google Scholar 

  11. He M, Ke CH, Wang WX (2010) Effects of cooking and subcellular distribution on the bioaccessibility of trace elements in two marine fish species. J Agric Food Chem 58:3517–3523

    Article  CAS  PubMed  Google Scholar 

  12. Peijnenburg WJGM, Vijver MG (2007) Metal-specific interactions at the interface of chemistry and biology. Pure Appl Chem 79:2351–2366

    Article  CAS  Google Scholar 

  13. Van het Hof KH, West CE, Weststrate JA, Hautvast JGAJ (2000) Dietary factors that affect the bioavailability of carotenoids. J Nutr 130:503–506

    Google Scholar 

  14. Zhao MT, Wang J, Lu BK, Lu H (2005) Certification of the cadmium content in certified reference materials for Cd rice flour. Rapid Commun Mass Spectrom 19:910–914

    Article  CAS  PubMed  Google Scholar 

  15. Yang LS, Zhang XW, Li YH, Li HR, Wang Y, Wang WY (2012) Bioaccessibility and risk assessment of cadmium from uncooked rice using an in vitro digestion model. Biol Trace Elem Res 145:81–86

    Article  CAS  PubMed  Google Scholar 

  16. Hu JL, Wu FY, Wu SC, Cao ZH, Lin XG, Wong MH (2013) Bioaccessibility, dietary exposure and human risk assessment of heavy metals from market vegetables in Hong Kong revealed with an in vitro gastrointestinal model. Chemosphere 91:455–461

    Article  CAS  PubMed  Google Scholar 

  17. Maulvault AL, Machado R, Afonso C, Lourenco HM, Maria LN, Coelho I, Langerholc T, Marques A (2011) Bioaccessibility of Hg, Cd and As in cooked black scabbard fish and edible crab. Food Chem Toxicol 49:2808–2815

    Article  CAS  PubMed  Google Scholar 

  18. Waisberg M, Black WD, Waisberg CM, Hale B (2004) The effect of pH, time and dietary source of cadmium on the bioaccessibility and adsorption of cadmium to/from lettuce (Lactuca sativa L. cv. Ostinata). Food Chem Toxicol 42:835–842

    Article  CAS  PubMed  Google Scholar 

  19. Houlbréque F, Hervé-Fernández P, Teyssié JL, Oberhaënsli F, Boisson F, Jeffree R (2011) Cooking makes cadmium contained in Chilean mussels less bioaccessible to humans. Food Chem 126:917–921

    Article  Google Scholar 

  20. Qin WS, Zou XJ, Qiu RL (2008) Health risk of heavy metals to the general public in Guangzhou, China via consumption of vegetables. J Agro-Environ Sci 27:1638–1642

    CAS  Google Scholar 

  21. Nie MH, Hou JR, Li SD, Liang XY (2010) Analysis of heavy metals of chemical contaminants investigation in food in Guangzhou 2010. Chin J Health La Technol 21:190–191

    Google Scholar 

  22. USDA Database (2014). ,http://ndb.nal.usda.gov/

  23. GB/T 5009.15 (2003) Determination of total cadmium in food. The national standard of the People’s Republic of China

  24. US EPA (1992) National study of chemical residues in fish (Vol. I). Washington, DC: Office of Science and Technology (WH-551)

  25. Llobet JM, Falcó G, Casas C, Teixidó A, Domingo JL (2003) Concentrations of arsenic, cadmium, mercury, and lead in common foods and estimated daily intake by children, adolescents, adults, and seniors of Catalonia, Spain. J Agric Food Chem 51:838–842

    Article  CAS  PubMed  Google Scholar 

  26. Falcó G, Llobet JM, Bocio A, Domingo JL (2006) Daily intake of arsenic, cadmium, mercury, and lead by consumption of edible marine species. J Agric Food Chem 54:6106–6112

    Article  PubMed  Google Scholar 

  27. Martí-Cid R, Bocio A, Llobet JM, Domingo JL (2007) Intake of chemical contaminants through fish and seafood consumption by children of Catalonia, Spain: health risks. Food Chem Toxicol 45:1968–1974

    Article  PubMed  Google Scholar 

  28. Domingo JL (2011) Influence of cooking processes on the concentrations of toxic metals and various organic environmental pollutants in food: a review of the published literature. Crit Rev Food Sci Nutr 51:29–37

    Article  CAS  PubMed  Google Scholar 

  29. Atta MB, El-Sebaie LA, Noaman MA, Kassab HE (1997) The effect of cooking on the content of heavy metals in fish (Tilapia nilotica). Food Chem 58:1–4

    Article  CAS  Google Scholar 

  30. Lind Y, Wicklund Glynn A, Engman J, Jorhem L (1995) Bioavailability of cadmium from crab hepatopancreas and mushroom in relation to inorganic cadmium: a 9-week feeding study in mice. Food Chem Toxicol 33:667–673

    Article  CAS  PubMed  Google Scholar 

  31. Burger J, Gaines KF, Boring CS, Snodgrass J, Stephens WL, Gochfeld M (2004) Effects of cooking on radiocesium in fish from the Savannah River: exposure differences for the public. Arc Environ Contam Toxicol 46:231–235

    CAS  Google Scholar 

  32. Cabaňero AI, Madrid Y, Cámara C (2004) Selenium and mercury bioaccessibility in fish samples: an in vitro digestion method. Anal Chim Acta 526:51–61

    Article  Google Scholar 

  33. García-Sartal C, del Barciela-Alonso MC, Moreda-Piňeiro A, Bermejo-Barrera P (2013) Study of cooking on the bioavailability of As, Co, Cr, Cu, Fe, Ni, Se and Zn from edible seaweed. Microchem J 108:92–99

    Article  Google Scholar 

  34. Devesa V, Macho ML, Jalón M, Urieta I, Muňóz O, Súňer MA, López F, Vélez D, Montoro R (2001) Arsenic in cooked seafood products: study on the effect of cooking on total and inorganic arsenic contents. J Agric Food Chem 49:4132–4140

    Article  CAS  PubMed  Google Scholar 

  35. Ersoy B, Yanar Y, Kücükgülmez A, Ҫelik M (2006) Effects of four cooking methods on the heavy metal concentrations of sea bass fillets (Dicentrarchus labrax Linne, 1785). Food Chem 99:748–751

    Article  CAS  Google Scholar 

  36. Alberti-Fidanza A, Burini G, Perriello G (2002) Trace elements in foods and meals consumed by students attending the faculty cafeteria. Sci Total Environ 287:133–140

    Article  CAS  PubMed  Google Scholar 

  37. Metian M, Hédouin L, Barbot C, Teyssié JL, Fowler SW, Goudard F, Bustamante P, Durand JP, Piéri J, Warnau M (2005) Use of radiotracer techniques to study subcellular distribution of metals and radionuclides in bivalves from the Noumea Lagoon, New Caledonia. Bull Environ Contam Toxicol 75:89–93

    Article  CAS  PubMed  Google Scholar 

  38. Carballo R, Castiňeiras A, Domínguez-Martín A, García-Santos I, Niclós-Gutiérrez J (2013) Solid state structures of cadmium complexes with relevance for biological systems. In: Sigel A, Sigel H, Sigel RKO (eds) Cadmium: from toxicity to essentiality. Springer, Dordrecht

    Google Scholar 

  39. Sun LP, Liu GX, Yang MZZ, Zhuang YL (2012) Bioaccessibility of cadmium in fresh and cooked Agaricus blazei murill assessed by in vitro biomimetic digestion system. Food Chem Toxicol 50:1729–1733

    Article  CAS  PubMed  Google Scholar 

  40. Metian M, Charbonnier L, Oberhaënsli F, Bustamante P, Jeffree R, Amiard JC, Warnau M (2009) Assessment of metal, metalloid, and radionuclide bioaccessibility from mussels to human consumers, using centrifugation and simulated digestion methods coupled with radiotracer techniques. Ecotoxicol Environ Safe 72:1499–1502

    Article  CAS  Google Scholar 

  41. Hur SJ, Lim BO, Decker EA, Julian McClements D (2011) In vitro human digestion models for food applications. Food Chem 125:1–12

    Article  CAS  Google Scholar 

  42. Li SX, Lin LX, Zheng FY, Wang QX (2011) Metal bioavailability and risk assessment from edible brown alga Laminaria japonica, using biomimetric digestion and absorption system and determination by ICP-MS. J Agric Food Chem 59:822–828

    Article  CAS  PubMed  Google Scholar 

  43. GB 2762 (2012) Maximum levels of contaminants in foods. The national standard of the People’s Republic of China

  44. Wang X, Yang XL (1996) An assessment on meals of the general public in Tianjin, 1992. China Chron Illn Prev Control 4:18–21

    Google Scholar 

  45. Dong QN, Wu JH, Jia M (1996) An analysis of meals nutrients of children below 14 years old in Tianjin. China Chron Illn Prev Control 6:138–139

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Natural Science Foundation of Guangdong Province (Grant No. S2012040006809).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Wang.

Additional information

ChaoWang and Han-Ying Duan contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Duan, HY. & Teng, JW. Assessment of Microwave Cooking on the Bioaccessibility of Cadmium from Various Food Matrices Using an In Vitro Digestion Model. Biol Trace Elem Res 160, 276–284 (2014). https://doi.org/10.1007/s12011-014-0047-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0047-z

Keywords

Navigation