Skip to main content

Advertisement

Log in

Zinc Inhibits Apoptosis and Maintains NEP Downregulation, Induced by Ropivacaine, in HaCaT Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc (Zn), a cell-protective metal against various toxic compounds, is the key agent for neutral endopeptidase (NEP) functional structure. NEP is a zinc metalloenzyme which degrades endogenous opioids and is expressed in human keratinocytes (HaCaT). Ropivacaine, a widely used opiate local anaesthetic, exerts cell toxic and apoptotic effects against HaCaT cells. The aim of the present study is to investigate whether zinc modulates the effects of ropivacaine on proliferation, viability, apoptosis and NEP expression in HaCaT cells. To investigate the role of ropivacaine in NEP function, HaCaT cells overexpressing NEP were generated via cell transfection with plasmids carrying NEP cDNA. Ropivacaine's anti-proliferative effect was tested by Neubauer's chamber cell counting, and induction of cell death was demonstrated by trypan blue exclusion assay. Apoptosis due to ropivacaine was tested via DNA fragmentation and poly-ADP-ribose-polymerase (PARP) cleavage. NEP and PARP expression was performed by western blot analysis. Results showed that zinc (15 μΜ) inhibited proliferation and cell death induction by ropivacaine (0.5, 1 and 2 mM) (p < 0.05) as well as apoptosis induced by the drug (0.5 and 1 mM) in HaCaT cells. Ropivacaine (1.0, 2.0 and 5.0 mM) downregulated NEP expression in the presence of zinc (15 μΜ) while NEP overexpression enhanced ropivacaine's apoptotic effect. In conclusion, the abilities of zinc to inhibit the toxic and apoptotic effects of ropivacaine, to maintain NEP downregulation induced by the drug and, consequently, to enhance its anaesthetic result suggest that zinc may have a significant role in pain management and tissue protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Owen MD, Dean LS (2000) Ropivacaine. Expert Opin Pharmacother 1:325–336

    Article  PubMed  CAS  Google Scholar 

  2. Werdehausen R, Fazeli S, Braun S et al (2009) Apoptosis induction by different local anaesthetics in a neuroblastoma cell line. Br J Anaesth 103:711–718

    Article  PubMed  CAS  Google Scholar 

  3. Grishko V, Xu M, Wilson G et al (2010) Apoptosis and mitochondrial dysfunction in humanchondrocytes following exposure to lidocaine, bupivacaine and ropivacaine. J Bone Joint Surg Am 92:609–618

    Article  PubMed  Google Scholar 

  4. Kontargiris E, Kolettas E, Vadalouca A et al (2004) Ectopic expression of clusterin/apolipoprotein J or Bcl-2 decrease the sensitivity of HaCaT cells to toxic effects of ropivacaine. Cell Res 14:415–422

    Article  PubMed  CAS  Google Scholar 

  5. Perry DK, Smyth MJ, Stennicke HR et al (1997) Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J Biol Chem 272:18530–18533

    Article  PubMed  CAS  Google Scholar 

  6. Zalewski PD, Forbes IJ, Giannakis C (1991) Physiological role for zinc in prevention of apoptosis (gene-directed death). Biochem Int 24:1093–1101

    PubMed  CAS  Google Scholar 

  7. Tamura T, Sadakata N, Oda T et al (2002) Role of zinc ions in ricin-induced apoptosis in U937 cells. Toxicol Lett 132:141–151

    Article  PubMed  CAS  Google Scholar 

  8. Ganju N, Eastman A (2003) Zinc inhibits Bax and Bak activation and cytochrome c release induced by chemical inducers of apoptosis but not by death-receptor-initiated pathways. Cell Death Differ 10:652–661

    Article  PubMed  CAS  Google Scholar 

  9. Wei Q, Wang J, Wang MH et al (2004) Inhibition of apoptosis by Zn2+ in renal tubular cells following ATP-depletion. Am J Physiol Renal Physiol 287:F492–F500

    Article  PubMed  CAS  Google Scholar 

  10. Tang H-B, Miyano K, Nakata Y (2009) Modulation of the substance P release from cultured rat primary afferent neurons by zinc ions. J Pharmacol Sci 110:397–400

    Article  PubMed  CAS  Google Scholar 

  11. Qian J, Noebels JL (2005) Visualization of transmitter release with zinc fluorescence detection at the mouse hippocampal mossy fibre synapse. J Physiol 566:747–758

    Article  PubMed  CAS  Google Scholar 

  12. Roques BP, Noble F, Daugè V et al (1993) Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev 45:87–146

    PubMed  CAS  Google Scholar 

  13. Noble F, Roques BP (2007) Protection of endogenous enkephalin catabolism as natural approach to novel analgesic and antidepressant drugs. Expert Opin Ther Targets 11:145–159

    Article  PubMed  CAS  Google Scholar 

  14. Erdös EG, Skidgel RA (1989) Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB 3:145–151

    Google Scholar 

  15. Wisner A, Dufour E, Messaoudi M et al (2006) Human opiorphin, a natural antinociceptive modulator of opioid-dependent pathways. Proc Natl Acad Sci U S A 103:17979–17984

    Article  PubMed  CAS  Google Scholar 

  16. Thanawala V, Kadam VJ, Ghosh R (2008) Enkephalinase inhibitors: potential agents for the management of pain. Curr Drug Targets 9:887–894

    Article  PubMed  CAS  Google Scholar 

  17. Papandreou CN, Usmani B, Geng Y et al (1998) Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen independent progression. Nat Med 4:50–57

    Article  PubMed  CAS  Google Scholar 

  18. Sumitomo M, Asano T, Asakuma J (2004) Chemosensitization of androgen-independent prostate cancer with neutral endopeptidase. Clin Cancer Res 10:260–266

    Article  PubMed  CAS  Google Scholar 

  19. Kajiyama H, Shibata K, Terauchi M (2005) Neutral endopeptidase 24.11/DC 10 suppresses progressive potential in ovarian carcinoma in vitro and in vivo. Clin Cancer Res 11:1798–1808

    Article  PubMed  CAS  Google Scholar 

  20. Boukamp P, Petrussevska RT, Breitkreutz D (1988) Normal keratinisation in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  PubMed  CAS  Google Scholar 

  21. Lanctot C, Fournier H, Howell S et al (1995) Direct targeting of neutral endopeptidase (EC 3.4.24.11) to the apical cell surface of transfected LLC-PK1 cells and unpolarized secretion of its soluble form. Biochem J 305:165–171

    PubMed  CAS  Google Scholar 

  22. Gonos ES, Spandidos DA (1993) Oncogenes in cellular immortalization and differentiation. Anticancer Res 13:1117–1122

    PubMed  CAS  Google Scholar 

  23. Vianale G, Reale M, Amerio P et al (2008) Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br J Dermatol 158:1189–1196

    Article  PubMed  CAS  Google Scholar 

  24. Turesson I, Nyman J, Qvarnström F et al (2010) A low-dose hypersensitive keratinocyte loss in response to fractionated radiotherapy is associated with growth arrest and apoptosis. Radiother Oncol 94:90–101

    Article  PubMed  CAS  Google Scholar 

  25. Gorman L, Mercer LP, Henning B (1996) Growth requirements of endothelial cells in culture: variation in serum and amino acids concentrations. Nutrition 12:266–270

    Article  PubMed  CAS  Google Scholar 

  26. Sugiki H, Hozumi Y, Maeshima H (2000) C2-ceramide induces apoptosis in a human squamous cell carcinoma cell line. Br J Dermatol 143:1154–1163

    Article  PubMed  CAS  Google Scholar 

  27. Brower MC, Johnson ME (2003) Adverse effects of local anesthetic infiltration on wound healing. Reg Anesth Pain Med 28:233–240

    PubMed  CAS  Google Scholar 

  28. Lansdown AB, Mirastschijski U, Stubbs N et al (2007) Zinc in wound healing: theoretical experimental and clinical aspects. Wound Repair Regen 15:2–16

    Article  PubMed  Google Scholar 

  29. Sharir H, Zinger A, Nevo A et al (2010) Zinc released from injured cells is acting via the Zn2+-sensing receptor, ZnR, to trigger signaling leading to epithelial repair. J Biol Chem 285:26097–26106

    Article  PubMed  CAS  Google Scholar 

  30. Sekler I, Sensi SL, Hershfinkel M et al (2007) Mechanism and regulation of cellular zinc transport. Mol Med 13:337–343

    Article  PubMed  CAS  Google Scholar 

  31. Kalfakakou VP, Evangelou AM, Benveniste J et al (1993) The effects of Zn2+ on guinea pig isolated heart preparations. Biol Trace Elem Res 38:289–299

    Article  PubMed  CAS  Google Scholar 

  32. Evangelou A, Kalfakakou V, Benveniste J et al (1995) Inhibition of PAF-acether effects on isolated guinea pig hearts by zinc ions. Biol Trace Elem Res 50:43–55

    Article  PubMed  CAS  Google Scholar 

  33. Rougeot C, Messaoudi M, Hermitte V et al (2003) Sialorphin, a natural inhibitor of rat membrane-bound neutral endopeptidase that displays analgesic activity. Proc Natl Acad Sci U S A 100:8549–8554

    Article  PubMed  CAS  Google Scholar 

  34. Nissen JB, Kragballe K (1997) Enkephalins modulate differentiation of normal human keratinocytes in vitro. Exp Dermatol 6:222–229

    Article  PubMed  CAS  Google Scholar 

  35. Cioca DP, Kitano K (2002) Induction of apoptosis and CD10/neutral endopeptidase expression by jaspamide in HL-60 line cells. Cell Mol Life Sci 59:1377–1387

    Article  PubMed  CAS  Google Scholar 

  36. Dai J, Shen R, Sumitomo M (2001) Tumor-suppressive effects of neutral endopeptidase in androgen-independent prostate cancer cells. Clin Cancer Res 7:1370–1377

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a European's Society for Regional Anaesthesia (ESRA) Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasiliki Kalfakakou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kontargiris, E., Vadalouka, A., Ragos, V. et al. Zinc Inhibits Apoptosis and Maintains NEP Downregulation, Induced by Ropivacaine, in HaCaT Cells. Biol Trace Elem Res 150, 460–466 (2012). https://doi.org/10.1007/s12011-012-9492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9492-8

Keywords

Navigation