Skip to main content
Log in

Efflux of Glutathione and Glutathione Complexes from Human Erythrocytes in Response to Inorganic Arsenic Exposure

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of the present study was to investigate if arsenic exposure results in glutathione efflux from human erythrocytes. Arsenite significantly depleted intracellular nonprotein thiol level in a time- and concentration-dependent manner. The intracellular nonprotein thiol level was decreased to 0.767 ± 0.0017 μmol/ml erythrocyte following exposure to 10 mM of arsenite for 4 h. Extracellular nonprotein thiol level was increased concomitantly with the intracellular decrease and reached to 0.481 ± 0.0005 μmol/ml erythrocyte in 4 h. In parallel with the change in extracellular nonprotein thiol levels, significant increases in extracellular glutathione levels were detected. Extracellular glutathione levels reached to 0.122 ± 0.0013, 0.226 ± 0.003, and 0.274 ± 0.004 μmol/ml erythrocyte with 1, 5, and 10 mM of arsenite, respectively. Dimercaptosuccinic acid treatment of supernatants significantly increased the glutathione levels measured in the extracellular media. Utilization of MK571 and verapamil, multidrug resistance-associated protein 1 and Pgp inhibitors, decreased the rate of glutathione efflux from erythrocytes suggesting a role for these membrane transporters in the process. The results of the present study indicate that human erythrocytes efflux glutathione in reduced free form and in conjugated form or forms that can be recovered with dimercaptosuccinic acid when exposed to arsenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chiou HY, Hsueh YM, Liaw KF, Horng SF, Chiang MH, Pu YS, Lin JSN, Huang CH, Chen CJ (1995) Incidence of internal cancers and ingested inorganic arsenic: a 7-year follow-up study in Taiwan. Cancer Res 55:1296–1300

    PubMed  CAS  Google Scholar 

  2. Das D, Chatterjee A, Mandal BK, Samanta G, Chakraborti D (1995) Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people. Analyst 120:917–924

    Article  PubMed  CAS  Google Scholar 

  3. Kersjes MP, Maurer JR, Trestrail JH, McCoy DJ (1987) An analysis of arsenic exposures referred to the blodgett regional poison center. Vet Hum Toxicol 29:75–78

    PubMed  CAS  Google Scholar 

  4. Kelafant GA, Kasarskis EJ, Horstman SW, Cohen C, Frank AL (1993) Arsenic poisoning in central Kentucky: a case report. Am J Ind Med 24:723–726

    Article  PubMed  CAS  Google Scholar 

  5. Kingston RL, Hall S, Sioris L (1993) Clinical observations and medical outcome in 149 cases of arsenate ant killer ingestion. Clin Toxicol 31:581–591

    Article  CAS  Google Scholar 

  6. Ishinishi N, Tsuchiya K, Vahter M, Fowler BA (1986) Arsenic. In: Friberg L, Nordberg GF, Vouk V (eds) Handbook on the toxicology of metals, 2nd edn. Elsevier Science, New York, pp 43–83

    Google Scholar 

  7. Iffland R (1994) Arsenic. In: Seiler HG, Sigel A, Sigel H (eds) Handbook on metals in clinical and analytical chemistry. Marcel Dekker, New York, pp 237–253

    Google Scholar 

  8. Chan PC, Huff J (1997) Arsenic carcinogenesis in animals and in humans: mechanistic, experimental, and epidemiological evidence. Environ Carcino Ecotox Rev C15:83

    CAS  Google Scholar 

  9. Knowles FC, Benson AA (1983) The biochemistry of arsenic. Trends Biochem Sci 8:178–180

    Article  CAS  Google Scholar 

  10. Dixon HBF (1977) The biochemical action of arsonic acids, especially as phosphate analogues. Adv Inorg Chem 44:191–227

    Article  Google Scholar 

  11. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Letters 133(1):1–16

    Article  CAS  Google Scholar 

  12. Nordenson I, Beckman L (1991) Is the genotoxic effect of arsenic mediated by oxygen free radicals. Hum Heredity 41:71–73

    Article  PubMed  CAS  Google Scholar 

  13. Shi H, Hudson LG, Ding W, Wang S, Cooper KL, Liu S, Chen Y, Shi X, Liu KJ (2004) Arsenite causes DNA damage in keratinocytes via generation of hydroxyl radicals. Chem Res Toxicol 17(7):871–878

    Article  PubMed  CAS  Google Scholar 

  14. Ding W, Hudson LG, Liu KJ (2005) Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes. Mol Cell Biochem 279(1–2):105–112

    Article  PubMed  CAS  Google Scholar 

  15. Lantz CR, Hays AM (2006) Role of oxidative stress in arsenic-induced toxicity. Drug Metabolism Reviews 38(4):791–804

    Article  PubMed  CAS  Google Scholar 

  16. Winski SL, Carter DE (1995) Interactions of rat red blood cell sulfhydryls with arsenate and arsenite. J Toxicol Environ Health 46(3):379–397

    Article  PubMed  CAS  Google Scholar 

  17. Loe DW, Deeley RG, Cole SPC (1998) Characterization of vincristine transport by the Mr 190,000 multidrug resistance protein (MRP): evidence for cotransport with reduced glutathione. Cancer Res 58:5130–5136

    PubMed  CAS  Google Scholar 

  18. Musallam L, Ethier C, Haddad PS, Denizeau F, Bilodeau M (2002) Resistance to Fas-induced apoptosis in hepatocytes: role of GSH depletion by cell isolation and culture. Am J Physiol Gastrointest Liver Physiol 283:G709–G718

    PubMed  CAS  Google Scholar 

  19. Pullar JM, Hampton MB (2002) Diphenyleneiodonium triggers the efflux of glutathione from cultured cells. J Biol Chem 277(22):19402–19407

    Article  PubMed  CAS  Google Scholar 

  20. He YY, Huang JL, Ramirez DC, Chignell CF (2003) Role of reduced glutathione efflux in apoptosis of immortalized human keratinocytes induced by UVA. J Biol Chem 278(10):8058–8064

    Article  PubMed  CAS  Google Scholar 

  21. Franco R, Cidlowski JA (2006) SLCO/OATP-like transport of glutathione in FasL-induced apoptosis. glutathione efflux is coupled to an organic anion exchange and is necessary for the progression of the execution phase of apoptosis. J Biol Chem 281(40):29542–29557

    Article  PubMed  CAS  Google Scholar 

  22. Rothnie A, Callaghan R, Deeley RG, Cole SPC (2006) Role of GSH in estrone sulfate binding and translocation by the multidrug resistance protein 1 (MRP1/ABCC1). J Biol Chem 281(20):13906–13914

    Article  PubMed  CAS  Google Scholar 

  23. Winski SL, Carter DE (1998) Arsenate toxicity in human erythrocytes: characterization of morphologic changes and determination of the mechanism of damage. J Toxicol Environ Health A 53(5):345–355

    Article  PubMed  CAS  Google Scholar 

  24. Zhanga TL, Gaob YX, Luc JF, Wang K (2000) Arsenite, arsenate and vanadate affect human erythrocyte membrane. J Inorganic Biochem 79(1–4):195–203

    Article  Google Scholar 

  25. Nemeti B, Csanaky I, Gregus Z (2003) Arsenate reduction in human erythrocytes and rats-testing the role of purine nucleoside phosphorylase. Toxicol Sci 74:22–31

    Article  PubMed  CAS  Google Scholar 

  26. Sedlak J, Lindsay RH (1963) Determination of sulfhydryl groups in biological samples. Analytical Biochem 25:192–205

    Article  Google Scholar 

  27. Welder AA, Acosta D (1994) Enzyme leakage as an indicator of cytotoxicity in cultured cells. Meth Toxicol 18:46–49

    Google Scholar 

  28. Leslie EM, Haimeur A, Waalkes MP (2004) Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1): evidence that a tri-glutathione conjugate is required. Biol Chem 279(31):32700–32708

    Article  CAS  Google Scholar 

  29. Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1993) Transfer of arsenite from glutathione to dithiols: a model of interaction. Chem Res Toxicol 6(5):598–602

    Article  PubMed  CAS  Google Scholar 

  30. Csanaky I, Gregus Z (2001) Effect of phosphate transporter and methylation inhibitor drugs on the disposition of arsenate and arsenite in rats. Toxicol Sci 63:29–36

    Article  PubMed  CAS  Google Scholar 

  31. Gyurasics A, Varga F, Gregus Z (1991) Glutathione-dependent biliary excretion of arsenic. Biochem Pharmacol 42(3):465–468

    Article  PubMed  CAS  Google Scholar 

  32. Nemeti B, Gregus Z (2005) Reduction of arsenate to arsenite by human erythrocyte lysate and rat liver cytosol—characterization of a glutathione- and NAD-dependent arsenate reduction linked to glycolysis. Toxicol Sci 85(2):847–858

    Article  PubMed  CAS  Google Scholar 

  33. Braman RS, Foreback CC (1973) Methylated forms of arsenic in the environment. Science 182(4118):1247–1249

    Article  PubMed  CAS  Google Scholar 

  34. Aposhian HV, Gurzau ES, Le XC et al (2000) Occurrence of monomethylarsonous acid in urine of humans exposed to inorganic arsenic. Chem Res Toxicol 13(8):693–697

    Article  PubMed  CAS  Google Scholar 

  35. Mandal BK, Ogra Y, Suzuki KT (2001) Identification of dimethylarsinous and monomethylarsonous acids in human urine of the arsenic-affected areas in West Bengal, India. Chem Res Toxicol 14(4):371–378

    Article  PubMed  CAS  Google Scholar 

  36. Kala SV, Neely MW, Kala G et al (2000) The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J Biol Chem 275(43):33404–33408

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki KT, Tomita T, Ogra Y, Ohmichi M (2001) Glutathione-conjugated arsenics in the potential hepato-enteric circulation in rats. Chem Res Toxicol 14(12):1604–1611

    Article  PubMed  CAS  Google Scholar 

  38. Hayakawa T, Kobayashi Y, Cui X, Hirano S (2005) A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79(4):183–191

    Article  PubMed  CAS  Google Scholar 

  39. Naranmandura H, Suzuki N, Suzuki KT (2006) Trivalent arsenicals are bound to proteins during reductive methylation. Chem Res Toxicol 19(8):1010–1018

    Article  PubMed  CAS  Google Scholar 

  40. Kondo T, Dale GL, Beutler E (1980) Glutathione transport by inside-out vesicles from human erythrocytes. Proc Natl Acad Sci USA 77(11):6359–6362

    Article  PubMed  CAS  Google Scholar 

  41. Anundi I, Hogberg J, Vahter M (1982) GSH release in bile as influenced by arsenite. FEBS Lett 145(2):285–288

    Article  PubMed  CAS  Google Scholar 

  42. Zaman GJR, Lankelma J, Tellingen OV, Beijnens J, Dekker H, Paulusma C, Ronald PJ, Elferink O, Baas F, Brost P (1995) Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci USA 92:7690–7694

    Article  PubMed  CAS  Google Scholar 

  43. Huang RN, Lee TC (1996) Arsenite efflux is inhibited by verapamil, cyclosporin A, and GSH-depleting agents in arsenite-resistant chinese hamster ovary cells. Toxicol Appl Pharmacol 141(1):17–22

    PubMed  CAS  Google Scholar 

  44. Delnomendieu M, Basti MM, Styblo M, Otvos JD, Thomas DJ (1994) Complexation of arsenic species in rabbit erythrocytes. Chem Res Toxicol 7:621–627

    Article  Google Scholar 

  45. Abraham EH, Sterling KM, Kim RJ, Salikhova AY, Huffman HB, Crockett MA, Johnston N, Parker HW, Boyle WE Jr, Hartov A, Demidenko E, Efird J, Kahn J, Grubman SA, Jefferson DM, Robson SC, Thakar JH, Lorico A, Rappa G, Sartorell AC, Okunieff P (2001) Erythrocyte membrane ATP Binding Cassette (ABC) proteins: MRP1 and CFTR as well as CD39 (Ecto-apyrase) involved in RBC ATP transport and elevated blood plasma ATP of cystic fibrosis. Blood Cell Mol Dis 27(1):165–180

    Article  CAS  Google Scholar 

  46. Klokouzas A, Wu CP, Van Veen HW, Barnard MA, Hladky SB (2003) cGMP and glutathione-conjugate transport in human erythrocytes. The roles of the multidrug resistance-associated proteins, MRP1, MRP4 and MRP5. Eur J Biochem 270:3696–3708

    Article  PubMed  Google Scholar 

  47. Abraham EH, Shrivastav B, Salikhova AY, Sterling KM, Johnston N, Guidotti G, Scala S, Litman T, Chan KC, Arceci RJ, Steiglitz K, Herscher L, Okunieff P (2001) Cellular and biophysical evidence for interactions between adenosine triphosphate and P-glycoprotein substrates: functional implications for adenosine triphosphate/drug cotransport in P-glycoprotein overexpressing tumor cells and in P-glycoprotein low-level expressing erythrocytes. Blood Cell Mol Dis 27(1):181–200

    Article  CAS  Google Scholar 

  48. Salerno M, Petroutsa M, Suillerot AG (2002) The MRP1-mediated effluxes of arsenic and antimony do not require arsenic-glutathione and antimony-glutathione complex formation. J Bioenerg Biomembr 34(2):135–145

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Yildiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yildiz, D., Cakir, Y. Efflux of Glutathione and Glutathione Complexes from Human Erythrocytes in Response to Inorganic Arsenic Exposure. Biol Trace Elem Res 150, 451–459 (2012). https://doi.org/10.1007/s12011-012-9491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9491-9

Keywords

Navigation