Skip to main content
Log in

Arsenic Trioxide (ATO) Influences the Gene Expression of Metallothioneins in Human Glioblastoma Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Arsenic trioxide (As2O3; ATO, TRISENOX®) is used to treat patients with refractory or relapsed acute promyelocytic leukaemia while its application for treatment of solid cancers like glioblastoma is still under evaluation. In the present study, we investigated the interaction of arsenic trioxide with metallothionein (MT) isoforms as a possible (protective response) resistance of glioblastoma cells to arsenic-induced cytotoxicity. Special attention was focused on MT3, the isoform expressed mainly in the brain. MT3 has low metal inducibility, fast metal binding/releasing properties and outstanding neuronal inhibitory activity. The human astrocytoma (glioblastoma) cell line U87 MG was treated with 0.6, 2 and 6–7 μM arsenic (equivalent to 0.3, 1 and 3–3.5 μM As2O3) for 12, 24 or 48 h and gene expression for different MT isoforms, namely MT2A, MT1A, MT1F, MT1X, MT1E and MT3, was measured by real time qPCR using SYBR Green I and Taqman® gene expression assays. TfR, 18S rRNA, GAPDH and AB were tested as reference genes, and the last two evaluated to be appropriate in conditions of low (GAPDH) and high (AB) arsenic exposure. The gene expression of MT3 gene was additionally tested and confirmed by restriction enzyme analysis with PvuII. In the given conditions the mRNAs of six MT isoforms were identified in human glioblastoma cell line U87 MG. Depending on arsenic exposure conditions, an increase or decrease of MT gene expression was observed for each isoform, with the highest increase for isoforms MT1X, MT1F and MT2A mRNA (up to 13-fold) and more persistent decreases for MT1A, MT1E and MT3 mRNA. Despite the common assumption of the noninducibility of MT3, the evident MT3 mRNA increase was observed during high As exposure (up to 4-fold). In conclusion, our results clearly demonstrate the influence of As on MT isoform gene expression. The MT1X, MT1F and MT2A increase could represent brain tumour acquired resistance to As cytotoxicity while the MT3 increase is more enigmatic, with its possible involvement in arsenic-related induction of type II cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Doyle D (2009) Notoriety to respectability: a short history of arsenic prior to present day use in haematology. BJH 145:309–317

    Article  PubMed  CAS  Google Scholar 

  2. Cell therapeutics Inc (2002), Trisenox, 2002. Cell Therapeutics Inc, London

  3. Dilda PJ, Hogg PJ (2007) Arsenical-based cancer drugs. Cancer Treat Rev 33:542–564

    Article  PubMed  CAS  Google Scholar 

  4. Stupp R, Hegi ME, Masson WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  PubMed  CAS  Google Scholar 

  5. Bredel M, Zentner J (2002) Brain-tumour drug resistance: the bare essentials. Lancet Oncol 3:397–406

    Article  PubMed  CAS  Google Scholar 

  6. Li Y, Maret W (2008) Human metallothionein metallomics. J Anal At Spectrom 23:1055–1062

    Article  CAS  Google Scholar 

  7. Hidalgo J, Chung R, Penkowa M (2009) Structure and function of vertebrate metallothioneins. Met Ions Life Sci 5:279–317

    Article  CAS  Google Scholar 

  8. Maret W (2011) Redox biochemistry of mammalian metallothioneins. J Biol Inorg Chem 16:1079–1086

    Article  PubMed  CAS  Google Scholar 

  9. Hidalgo J, Aschner M, Zatta P et al (2001) Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull 55:133–145

    Article  PubMed  CAS  Google Scholar 

  10. Vašak M, Meloni G (2009) Metallothionein-3, zinc, and copper in the central nervous system. Mol Ions Life Sci 5:319–351

    Article  Google Scholar 

  11. Tiffany-Castiglioni E, Qian Y (2001) Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release. Neuro Toxicol 22:577–592

    CAS  Google Scholar 

  12. West AK, Leung JY, Chung RS (2011) Neuroprotection and regeneration by extracellular metallothionein via lipoprotein-receptor-related proteins. J Biol Inorg Chem 16:1115–1122

    Article  PubMed  CAS  Google Scholar 

  13. Falnoga I, Šlejkovec Z, Pucer A et al (2007) Arsenic metabolism in multiple myeloma and astrocytoma cells. Biol Trace Elem Res 116:5–28

    Article  PubMed  CAS  Google Scholar 

  14. Tušek Žnidarič M, Pucer A, Fatur T (2007) Metal binding of metallothioneins in human astrocytomas (U87 MG, IPDDC-2A). Biometals 20:781–792

    Article  Google Scholar 

  15. Moleirinho A, Carneiro J, Matthiesen R et al (2011) Gains, losses and changes of function after gene duplication: study of the metallothionein family. PLoS One 6:e18487

    Article  PubMed  CAS  Google Scholar 

  16. Haq F, Mahoney M, Kiropatnick J (2003) Signalling events for metallothionein induction. Mutat Res 533:211–226

    Article  PubMed  CAS  Google Scholar 

  17. Sogawa CA, Asanuma M, Sogawa N et al (2001) Localization, regulation, and function of metallothionein-III/growth inhibitory factor in the brain. Acta Med Okayama 55:1–9

    PubMed  CAS  Google Scholar 

  18. Balamurogan K, Schaffner W (2009) Regulation of metallothionein gene expression. Met Ions Life Sci 5:31–49

    Article  Google Scholar 

  19. He X, Ma Q (2009) Induction of metallothionein I by Arsenic via metal-activated transcription factor 1: critical role of C-terminal cysteine residues in arsenic sensing. J Biol Chem 284:12609–12621

    Article  PubMed  CAS  Google Scholar 

  20. Palmiter RD, Findley SD, Withmore TE et al (1992) MT-III, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci USA 89:6333–6337

    Article  PubMed  CAS  Google Scholar 

  21. Aschner M, Syversen T, Souza DO, Rocha JBT (2006) Metallothioneins: mercury species-specific induction and their potential role in attenuating neurotoxicity. Exp Biol Med 231:1468–1473

    CAS  Google Scholar 

  22. Minami T, Miyata E, Sakamoto Y et al (2010) Induction of metallothionein in mouse cerebellum and cerebrum with low-dose thimerosal injection. Cell Biol Toxicol 26:143–152

    Article  PubMed  CAS  Google Scholar 

  23. Van Elteren JT, Stibilj V, Šlejkovec Z (2002) Speciation of inorganic arsenic in some bottled Slovene mineral waters using HPLC-HGAFS and selective coprecipitation combined with FI-HGAFS. Water Res 36:2967–2974

    Article  PubMed  Google Scholar 

  24. Zelenik Pevec A, Šlejkovec Z, van Elteren JT (2012) As2O3 oxidation by vitamin C—cell culture studies. Biometals 25:103–113

    Article  PubMed  CAS  Google Scholar 

  25. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  26. Shen ZX, Chen GQ, Ni JH et al (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89:3354–3360

    PubMed  CAS  Google Scholar 

  27. Šlejkovec Z, Falnoga I, Goessler W et al (2008) Analytical artefacts in the speciation of arsenic in clinical samples. Anal Chim Acta 607:83–91

    Article  PubMed  Google Scholar 

  28. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  29. NolanT HRE, Bustin SA (2006) Quantification of mRNA using real-time RT-PRC. Nat Protoc 1:1559–1582

    Article  Google Scholar 

  30. Ferguson BS, Nam H, Hopkins RG, Morrison RF (2010) Impact of reference gene selection for target gene normalization on experimental outcome using real-time qPCR in adipocites. PLoS One 5(e1528):1–10

    Google Scholar 

  31. Calabrese EJ (2008) Adaptive response to low doses of neurotoxins. Critical Rev Toxicol 38:463–471

    Article  CAS  Google Scholar 

  32. Cui X, Okayasu R (2008) Arsenic accumulation, elimination, and interaction with copper, zinc and manganese in liver and kidney of rats. Food Chem Toxicol 46:3646–3650

    Article  PubMed  CAS  Google Scholar 

  33. Liu J, Cheng ML, Yang Q et al (2007) Blood metallothionein transcript as a biomarker for metal sensitivity: low blood metallothionein transcripts in arsenicosis patients from Guizhou, China. EHP 115:1101–1106

    PubMed  CAS  Google Scholar 

  34. Amoureoux M-C, Wurch T, Pauwels PJ (1995) Modulation of metallothionein-III mRNA content and growth rate of rat C-6glial cells by transcriortion with human 5-HT1D receptor genes. Biochem Biophys Res Commun 214:639–645

    Article  Google Scholar 

  35. Jalonen TO (1996) Mechanisms of glia-mediated cadmium and zinc neurotoxicity. Chapter 11. In: Aschner M, Kimberly HK (eds) The role of glia in neurotoxicity. CRC Press, London. pp 221–224

  36. Lee C, Lee YM, Rice RH (2005) Human epidermal cell protein responses to arsenite treatment in culture. Chemico-Biol Interact 155:43–54

    Article  CAS  Google Scholar 

  37. Hozumi I, Suzuki JS, Kanazawa H et al (2008) Metallothionein-3 is expressed in the brain and various peripheral organs of the rat. Neurisci Lett 438:54–58

    Article  CAS  Google Scholar 

  38. Chung RS, Hidalgo J, West AK (2008) New insights into molecular pathways of metallothionein mediated neuroprotection and regeneration. J Neurochem 104:14–20

    PubMed  CAS  Google Scholar 

  39. Dantas-Barbosa C, Berghold G, Dieffenbach G, Blockus H, Puger S, Sainte-Rose C, Georger B, Vassal G, Grill J (2010) From MT3 modulation to HDACi treatment in brain tumors. J Neuro-Oncol 12:ii89

    Google Scholar 

  40. Peyre M, Commo F, Dantas-Barbosa C et al (2010) Portrait of ependymoma recurrence in children: biomarkers of tumor progression identified by dual-color microarray-based gene expression analysis. PLoS One 5:e12932

    Article  PubMed  Google Scholar 

  41. Miura N, Koizumi S (2007) Heavy metal responses of the human metallothionein isoform genes. Yakugaku Zasshi 127:665–673

    Article  PubMed  CAS  Google Scholar 

  42. Ngu TT, Dryden MDM, Stillman MJ (2010) Arsenic transfer between metallothionein proteins at physiological pH. Biochem Biophys Res Commun 401:69–74

    Article  PubMed  CAS  Google Scholar 

  43. Lee S-J, Koh J-Y (2010) Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol Brain 3:30

    Article  PubMed  Google Scholar 

  44. Kanzawa T, Zhang L, Xiao L et al (2005) Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP. Oncogene 24:980–991

    Article  PubMed  CAS  Google Scholar 

  45. Pucer A, Castino R, Mirković B et al (2010) Differential role of cathepsins B and L in autophagy-associated cell death induced by arsenic trioxide in U87 human glioblastoma cells. Biol Chem 391:519–531

    Article  PubMed  CAS  Google Scholar 

  46. Kögel D, Fulda S, Mitellbronn M (2010) Therapeutic exploitation of apoptosis and autophagy for glioblastoma. Anticancer Agents Med Chem 10:438–449

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for this study was received from the Slovene Ministry of Higher Education, Science and Technology J3-0161 (Arsenic metabolism during treatment of various cancer types), through research programme P1-0143 and through a Ph.D. project of one of the authors (A Zelenik Pevec).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Falnoga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falnoga, I., Zelenik Pevec, A., Šlejkovec, Z. et al. Arsenic Trioxide (ATO) Influences the Gene Expression of Metallothioneins in Human Glioblastoma Cells. Biol Trace Elem Res 149, 331–339 (2012). https://doi.org/10.1007/s12011-012-9431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9431-8

Keywords

Navigation