Skip to main content
Log in

Hematotoxicity and Genotoxicity of Mercuric Chloride Following Subchronic Exposure Through Drinking Water in Male Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Erythrocytes are a convenient model to understand the subsequent oxidative deterioration of biological macromolecules in metal toxicities. The present study examined the variation of hematoxic and genotoxic parameters following subchronic exposure of mercuric chloride via drinking water and their possible association with oxidative stress. Male rats were exposed to 50 ppm (HG1) and 100 ppm (HG2) of mercuric chloride daily for 90 days. A significant dose-dependent decrease was observed in red blood cell count, hemoglobin, hematocrit, and mean cell hemoglobin concentration in treated groups (HG1 and HG2) compared with controls. A significant dose-dependent increase was observed in lipid peroxidation; therefore, a significant variation was found in the antioxidant enzyme activities, such as superoxide dismutase, catalase, and glutathione peroxidase. Interestingly, mercuric chloride treatment showed a significant dose-dependent increase in frequency of total chromosomal aberration and in percentage of aberrant bone marrow metaphase of treated groups (p < 0.01). The oxidative stress induced by mercury treatment may be the major cause for chromosomal aberration as free radicals lead to DNA damage. These data will be useful in screening the antioxidant activities of natural products, which may be specific to the bone marrow tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Betti C, Davini T, Barale R (1992) Genotoxic activity of methyl mercury chloride and dimethyl mercury in human lymphocytes. Mutat Res 281:255–260

    Article  PubMed  CAS  Google Scholar 

  2. Woods JS, Calas CA, Aicher LD, Robinson BH, Maler C (1990) Stimulation of phorfirinogen oxidation by mercuric ion 1. Evidence of free radical formation in the presence of thiols and hydrogen peroxide. Mol Pharmacol 38:253–260

    PubMed  CAS  Google Scholar 

  3. Patni R, Sharma MK, Kumar M (2001) Modulation of certain hematological parameters in mercuric toxicity by Spirulina fusiformis in Swiss albino mice. Indian J Environ Toxicol 11:32–34

    Google Scholar 

  4. Su L, Wang M, Yin ST, Wang HL, Chen L, Sun LG, Ruan DY (2008) The interaction of selenium and mercury in the accumulations and oxidative stress of rat tissues. Ecotoxicol Environ Saf 70:438–489

    Article  Google Scholar 

  5. Park EJ, Park K (2007) Induction of reactive oxygen species and apoptosis in BEAS-2B cells by mercuric chloride. Toxicol in Vitro 21:789–794

    Article  PubMed  CAS  Google Scholar 

  6. Emrah C, Metin A, Ihsan H (2008) Antioxidant effects of methionine, α-lipoic acid, N-acetylcysteine and homocysteine on lead-induced oxidative stress to erythrocytes in rats. Exp Toxicol Pathol 60:289–294

    Article  Google Scholar 

  7. Cimen MY (2008) Free radical metabolism in human erythrocytes. Clin Chim Acta 390:1–11

    Article  PubMed  CAS  Google Scholar 

  8. Oztekin E, Baltaci AK, Tiftik AM, Mogulkoc R (2007) Lipid peroxidation in ovariectomized and pinealectomized rats: the effects of estradiol and progesterone supplementation. Cell Biochem Funct 5:551–554

    Article  Google Scholar 

  9. Mogulkoc R, Baltaci AK, Oztekin E, Aydin L, Sivrikaya A (2006) Melatonin prevents oxidant damage in various tissues of rats with hyperthyroidism. Life Sci 3:311–315

    Article  Google Scholar 

  10. Bediz CS, Baltaci AK, Mogulkoc R, Oztekin E (2006) Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain. Tohoku J Exp Med 2:133–140

    Article  Google Scholar 

  11. Jadhav SH, Sarkar SN, Tripathi HC (2006) Cytogenetic effects of mixture of selected metals following subchronic exposure through drinking water in male rats. Indian J Exp Biol 44:997–1005

    PubMed  CAS  Google Scholar 

  12. Schurz F, Sabater-Vilar M, Fink-Gremmels J (2000) Mutagenicity of mercury chloride and mechanisms of cellular defence: the role of metal-binding proteins. Mutagenesis 15:525–530

    Article  PubMed  CAS  Google Scholar 

  13. Al-Sabti K, Lloyd DC, Edwards AA, Stenar P (1992) Survey of lymphocyte chromosomal damage in Slovenian workers exposed to occupational clastogens. Mutat Res 280:215–223

    Article  PubMed  CAS  Google Scholar 

  14. Loftenius A, Ekstrand J, Moller E (1997) In vitro effects of mercuric chloride (HgCl2) on human mononuclear cells. Clin Exp Immunol 110:418–422

    Article  PubMed  CAS  Google Scholar 

  15. Topashka-Ancheva M, Metcheva R, Teodorova S (2003) A comparative analysis of the heavy metal loading of small mammals in different regions of Bulgaria II: chromosomal aberrations and blood pathology. Ecotoxicol Environ Saf 54:188–193

    Article  PubMed  CAS  Google Scholar 

  16. Falnoga I, Kregar I, Skreblin M, Tusek-Znidaric M, Stegnar P (1993) Interactions of mercury in rat brain. Biol Trace Elem Res 37:71–83

    Article  PubMed  CAS  Google Scholar 

  17. Oliveira FRT, Ferreira JR, Dos Santos CMC, Macedo LEM, De Olivera RB, Rodrigues JA, Do Nascimento JLM, Faro LRF, Diniz DLWP (2006) Estradiol reduces cumulative mercury and associated disturbances in the hypothalamus–pituitary axis of ovariectomized rats. Ecotoxicol Environ Saf 63:488–493

    Article  PubMed  CAS  Google Scholar 

  18. Boujbiha MA, Hamden K, Guermazi F, Bouslama A, Omezzine A, Kammoun A, El Feki A (2009) Testicular toxicity in mercuric chloride-treated rats: association with oxidative stress. Reprod Toxicol 28:81–89

    Article  PubMed  CAS  Google Scholar 

  19. Shinyashiki M, Kumagai Y, Nakajima H, Nagafune J, Homma-Takeda S, Sagai M, Shimojo N (1998) Differential changes in rat brain nitric oxide synthase in vivo and in vitro by methylmercury. Brain Res 798:147–155

    Article  PubMed  CAS  Google Scholar 

  20. Asada K, Takahashi M, Nagate M (1974) Assay and inhibitors of spinach superoxide dismutase. Agric Biol Chem 38:471–473

    Article  CAS  Google Scholar 

  21. Aebi H (1974) Catalase. Meth Enzym Anal 2:673–684

    Google Scholar 

  22. Flohe L, Gunzler WA (1984) Analysis of glutathione peroxidase. Meth Enzymol 105:114–121

    Article  PubMed  CAS  Google Scholar 

  23. Esterbauer H, Gebicki J, Puhl H, Jurgens G (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 13:341–390

    Article  PubMed  CAS  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  25. Evans EP, Breckon G, Forf CE (1963) An air-drying method for meiotic preparations from mammalian testes. Cytogenetics 3:289–294

    Article  Google Scholar 

  26. Sharma MK, Patni R, Kumar M, Kumar A (2005) Modification of mercury-induced biochemical alterations in blood of Swiss albino mice by Spirulina fusiformis. Environ Toxicol Pharmacol 20:289–296

    Article  PubMed  CAS  Google Scholar 

  27. Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  PubMed  CAS  Google Scholar 

  28. Gonzalez-Munoz MJ, Meseguer I, Sanchez-Reus MI, Schultz A, Olivero R, Benedí J, Sanchez-Muniz FJ (2008) Beer consumption reduces cerebral oxidation caused by aluminum toxicity by normalizing gene expression of tumor necrotic factor alpha and several antioxidant enzymes. Food Chem Toxicol 3:1111–1118

    Google Scholar 

  29. Tapiero H, Tew KD, Gate L, Machover D (2001) Prevention of pathologies associated with oxidative stress and dietary intake deficiencies: folate deficiency and requirements. Biomed Pharmacother 55:381–390

    Article  PubMed  CAS  Google Scholar 

  30. Cheng YT (1998) Changes of redox status in folic acid deprivation-induced apoptosis: a possible role for homocysteine. MS—thesis, Department of Medical Technology, Graduate Institute of Basic Medicine, Chang Gung University, Taiwan

  31. Harvey AN, Costa ND, Savage JR, Thacker J (1997) Chromosomal aberrations induced by defined DNA double-strand breaks: the origin of achromatic lesions. Somat Cell Mol Genet 23:211–219

    Article  PubMed  CAS  Google Scholar 

  32. Morgan WF, Corcoranj J, Hartmann A, Kaplan MI, Limoli CL, Ponnaiya B (1998) DNA double-strand breaks, chromosomal rearrangements, and genomic instability. Mutat Res 404:125–128

    Article  PubMed  CAS  Google Scholar 

  33. Akiyama M, Oshima H, Nakamura M (2001) Genotoxicity of mercury used in chromosomal aberration tests. Toxicol in Vitro 15:463–467

    Article  PubMed  CAS  Google Scholar 

  34. Rozgaj R, Kasuba V, Blanusa M (2005) Mercury chloride genotoxicity in rats following oral exposure, evaluated by comet assay and micronucleus test. Arch Hiq Rada Toksikol 56:9–15

    CAS  Google Scholar 

  35. Ehrenstein C, Shu P, Wickenheiser EB, Hirner AV, Dolfen M, Emons H, Obe G (2002) Methyl mercury uptake and associations with the induction of chromosomal aberrations in Chinese hamster (CHO) cells. Chem Biol Interact 141:259–274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Higher Education and Scientific Research in Tunisia.

Conflicts of interest

We declare that we do not have any actual or potential conflict of interest including any financial, personal, or other relationships with other people or organizations concerning this work which will be published in your journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelfattah El Feki.

Additional information

Mohamed Ali Boujbiha and Ghada Ben Salah participated equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boujbiha, M.A., Ben Salah, G., Ben Feleh, A. et al. Hematotoxicity and Genotoxicity of Mercuric Chloride Following Subchronic Exposure Through Drinking Water in Male Rats. Biol Trace Elem Res 148, 76–82 (2012). https://doi.org/10.1007/s12011-012-9342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9342-8

Keywords

Navigation