Skip to main content

Advertisement

Log in

Anti-hyperglycemic Activity of Chromium(III) Malate Complex in Alloxan-Induced Diabetic Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The synthesis, characterization, anti-hyperglycemic activity, oxidative DNA damage capacity, and acute toxicity of chromium(III) malate complex [Cr2(LMA)3] were described. [Cr2(LMA)3] was synthesized in a single-step reaction by chelating chromium(III) with L-malic acid in aqueous solution. Based on elemental analysis, thermodynamic analysis, and spectroscopy studies, the molecular formula of [Cr2(LMA)3] was inferred as Cr2(C4H4O5)3·5H2O. Daily treatment with 2.85–17.10 mg/kg body mass of [Cr2(LMA)3] in alloxan-induced diabetic rats for 2 weeks indicated that low-molecular-weight organic chromium complex [Cr2(LMA)3] had better bioavailability and more beneficial influences on the improvement of controlling blood glucose, serum lipid, and liver glycogen levels compared with CrCl3·6H2O. [Cr2(LMA)3] did not cause oxidative DNA damage under physiologically relevant conditions. Acute toxicity studies revealed no-measurable toxicity of the [Cr2(LMA)3]. Collectively, these results suggest that [Cr2(LMA)3] may represent a novel, proper chromium supplement with potential therapeutic value to control blood glucose and serum lipid in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ghosh D, Bhattacharya B, Mukherjee B et al (2002) Role of chromium supplementation in Indians with type 2 diabetes mellitus. J Nutr Biochem 13:690–697

    Article  PubMed  CAS  Google Scholar 

  2. Morris BW, Kouta S, Robinson R et al (2000) Chromium supplementation improves insulin resistance in patients with Type 2 diabetes mellitus. Diabet Med 17:684–685

    Article  PubMed  CAS  Google Scholar 

  3. Preuss HG, Echard B, Perricone NV et al (2008) Comparing metabolic effects of six different commercial trivalent chromium compounds. J Inorg Biochem 102:1986–1990

    Article  PubMed  CAS  Google Scholar 

  4. Anderson RA (1997) Chromium as an essential nutrient for humans. Regul Toxicol Pharmacol 26:S35–S41

    Article  CAS  Google Scholar 

  5. Sahina K, Ondercib M, Tuzcuc M et al (2007) Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: the fat-fed, streptozotocin-treated rat. Metab Clin Exp 56:1233–1240

    Article  Google Scholar 

  6. Vincent JB (2001) The bioinorganic chemistry of chromium(III). Polyhedron 20:1–26

    Article  CAS  Google Scholar 

  7. Vrtovec M, Vrtovec B, Briski A et al (2005) Chromium supplementation shortens QTc interval duration in patients with type 2 diabetes mellitus. Am Heart J 149:632–636

    Article  PubMed  CAS  Google Scholar 

  8. Besong S, Jackson JA, Trammell DS et al (2001) Influence of supplemental chromium on concentrations of liver triglyceride, blood metabolites and rumen VFA profile in steers fed a moderately high fat diet. J Dairy Sci Sci 84:1679–1685

    Article  CAS  Google Scholar 

  9. Stallings DM, Hepburn DDD, Hannah M et al (2006) Nutritional supplement chromium picolinate generates chromosomal aberrations and impedes progeny development in Drosophila melanogaster. Mutat Res 610:101–113

    PubMed  CAS  Google Scholar 

  10. Andersson MA, Petersson Grawe Kierstin V, Karlsson OM et al (2007) Evaluation of the potential genotoxicity of chromium picolinate in mammalian cells in vivo and in vitro. Food Chem Toxicol 45:1097–1106

    Article  PubMed  CAS  Google Scholar 

  11. Hepburn DDD, Marcel Burney J, Woski SA et al (2003) The nutritional supplement chromium picolinate generates oxidative DNA damage and peroxidized lipids in vivo. Polyhedron 22:455–463

    Article  CAS  Google Scholar 

  12. Król E, Krejpcio Z (2010) Chromium(III) propionate complex supplementation improves carbohydrate metabolism in insulin-resistance rat model. Food Chem Toxicol 48:2791–2796

    Article  PubMed  Google Scholar 

  13. Staniek H, Kostrzewska-Poczekaj M, Arndt M et al (2010) Genotoxicity assessment of chromium(III) propionate complex in the rat model using the comet assay. Food Chem Toxicol 48:89–92

    Article  PubMed  CAS  Google Scholar 

  14. Staniek H, Krejpcio Z, Iwanik K (2010) Evaluation of the acute oral toxicity class of tricentric chromium(III) propionate complex in rat. Food Chem Toxicol 48:859–864

    Article  PubMed  CAS  Google Scholar 

  15. Bobyleva-Guarriero V, Wehbie RS, Lardy HA (1986) The role of malate in hormone-induced enhancement of mitochondrial respiration. Arch Biochem Biophys 245:477–482

    Article  PubMed  CAS  Google Scholar 

  16. Wu JL, Wu QP, Yang XF et al (2008) L-malate reverses oxidative stress and antioxidative defenses in liver and heart of aged rats. Physiol Res 57:261–268

    PubMed  CAS  Google Scholar 

  17. Deburgos NMG, Gallina F, Burgos C et al (1994) Effect of L-malate on pyruvate-dehydrogenase activity of spermatozoa. Arch Biochem Biophys 308:520–524

    Article  Google Scholar 

  18. Nair SA, Shylesh BS, Gopakumar B et al (2006) Anti-diabetes and hypoglycaemic properties of Hemionitis arifolia (Burm.) Moore in rats. J Ethnopharmacol 106:192–197

    Article  Google Scholar 

  19. Buccolo G, David M (1973) Quantitative determination of serum triglycerides by use of enzyme. Clin Chem 19:476–482

    Google Scholar 

  20. Carroll NV, Longly RW, Joseph HR (1956) Determination of glycogen in liver and muscle by use of anthrone reagent. J Biol Chem 220:583–593

    PubMed  CAS  Google Scholar 

  21. Hallwell B, Gutteridge JM, Aruoma OI (1987) The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219

    Article  Google Scholar 

  22. Hilaly JE, Israili ZH, Lyoussi B (2004) Acute and chronic toxicological studies of Ajuga iva in experimental animals. J Ethnopharmacol 91:43–50

    Article  PubMed  Google Scholar 

  23. Abdel-Monem MM, Mahamoud M, Anderson MD (2003) Novel chromium(III) alpha amino acid complexes. US patent: 0030228394

  24. Yang X, Palanichamy K, Ontko AC et al (2005) A newly synthetic chromium complex—chromium(phenylalanine)3 improves insulin responsiveness and reduces whole body glucose tolerance. FEBS Lett 579:1458–1464

    Article  PubMed  CAS  Google Scholar 

  25. Kim D-S, Kim T-W, Park I-K et al (2002) Effects of chromium picolinate supplementation on insulin sensitivity, serum lipids, and body weight in dexamethasone-treated rats. Metabolism 51:589–594

    Article  PubMed  CAS  Google Scholar 

  26. Bordbar A-K, Creagh AL, Mohammadi F et al (2009) Calorimetric studies of the interaction between the insulin-enhancing drug candidate bis(maltolato)oxovanadium(IV) (BMOV) and human serum apo-transferrin. J Inorg Biochem 103:643–647

    Article  PubMed  CAS  Google Scholar 

  27. Yang X, Li S-Y, Dong F et al (2006) Insulin-sensitizing and cholesterol-lowering effects of chromium (D-Phenylalanine)3. J Inorg Biochem 100:1187–1193

    Article  PubMed  CAS  Google Scholar 

  28. Vincent JB (2004) Recent advances in the nutritional biochemistry of trivalent chromium. Proc Nutr Soc 63:41–47

    Article  PubMed  CAS  Google Scholar 

  29. Hepburn DD, Vincent JB (2002) In vivo distribution of chromium from chromium picolinate in rats and implications for the safety of the dietary supplement. Chem Res Toxicol 15:93–100

    Article  PubMed  CAS  Google Scholar 

  30. Alexeeff GV, Broadwin R, Liaw J et al (2002) Characterization of the LOAEL-to-NOAEL uncertainty factor for mild adverse effects from acute inhalation exposures. Regul Toxicol Pharmacol 36:96–105

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by Specialized Research Fund for the Doctoral Program of Higher Education of China (20103227110004) and Graduate innovative projects in Jiangsu University (CX10B_019X).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu-Qing Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XY., Li, F., Xu, WD. et al. Anti-hyperglycemic Activity of Chromium(III) Malate Complex in Alloxan-Induced Diabetic Rats. Biol Trace Elem Res 143, 1031–1043 (2011). https://doi.org/10.1007/s12011-010-8916-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8916-6

Keywords

Navigation