Skip to main content
Log in

Biological and Microcalorimetric Studies of the Toxic Effect of Organoarsenic(V) Compounds to Wild Strain of Bacillus thuringiensis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Microcalorimetric and biological methods were carried out to determine the toxicity of dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) to wild strain of Bacillus thuringiensis. Thermokinetic parameters were obtained from the power–time curves, showing that the peak-heat output power, total heat output, and number of colonies decreased with the increases in concentration of DMA and MMA. In addition, the generation time and peak maximal time increased with the increases in the dosage of DMA and MMA. The half inhibitory concentrations of DMA and MMA were 99.02 and 142.02 μg mL−1, respectively for the wild strain of B. thuringiensis. DMA shows higher toxicity to bacteria than MMA. The toxicity resistance of B. thuringiensis against organoarsenic(V) is quite high for the wild strain. Our work demonstrates that microcalorimetry is a very sensitive, simple, and useful technique for in vitro investigation of the toxic effect of organoarsenic(V) on microbial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cullen WR , Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764.

    Article  CAS  Google Scholar 

  2. Smedley PL, Kinniburg DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568.

    Article  CAS  Google Scholar 

  3. United States Environmental Protection Agency (1998), Locating and estimating air emissions from sources of arsenic and arsenic compounds EPA-454-R98-013, Office of Air Quality Planning and Standards.

  4. Karagas MR, Le CX, Morris S, Blum J, Lu X, Spate V (2001) Markers of low level Arsenic exposure for evaluating human cancer risks in the US population. Int J Occup Env Heal 14:171–175.

    CAS  Google Scholar 

  5. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16.

    Article  PubMed  CAS  Google Scholar 

  6. Bednar AJ, Garbarino JR, Ferrer I, Rutherford DW, Wershaw RL, Ranville JF, Wildeman TR (2003) Photodegradation of roxarsone in poultry litter leachates. Sci Total Environ 302:237–245.

    Article  PubMed  CAS  Google Scholar 

  7. Fulladosa E, Murat JC, Bollinger JC, Villaescusa I (2007) Adverse effects of organic arsenical compounds towards Vibrio fischeri bacteria. Sci Total Environ 377:207–213.

    Article  PubMed  CAS  Google Scholar 

  8. United States Environmental Protection Agency (2001) Fact sheet: drinking water standard for arsenic EPA-815-F-00-015, The Office of Ground Water and Drinking Water.

  9. Agency for Toxic Substances and Disease Registry (2000), Toxicological profile for arsenic. United States Department of Health and Human Services, Public Health Service, Agency for toxic Substances and Disease Atlanta, Georgia, www.atsdr.cdc.gov/clist.html.

  10. Ferguson JF, Gavis J (1972) A review of arsenic cycle in natural waters. Water Res 69:1259–1274.

    Article  Google Scholar 

  11. Jain CK, Ali I (2000) Arsenic: occurrence, toxicity and speciation techniques. Water Res 34:4304–4312.

    Article  CAS  Google Scholar 

  12. Prado AGS, Airoldi C (1999) The influence of moisture on microbial activity of soils. Thermochim Acta 332:71–74.

    Article  CAS  Google Scholar 

  13. Zheng D, Liu Y, Zhang Y, Chen XJ, Shen YF (2006) Microcalorimetric investigation of the toxic action of Cr(VI) on the metabolism of Tetrahymena thermophila BF5 during growth. Environ Toxicol Phar 22:121–127.

    Article  Google Scholar 

  14. Ma J, Qi WT, Yang LN, Yu WT, Xie YB, Wang W, Ma XJ, Xu F, Sun LX (2007) Microcalorimetric study on the growth and metabolism of microencapsulated microbial cell culture. J Microbiol Meth 68:172–177.

    Article  CAS  Google Scholar 

  15. Miles RJ, Beezer AE, Lee DH (1986) Growth of mycoplasma mycoides subspecies mycoides on media containing various sugars and amino sugars: an ampoule microcalorimetric study. Microbios 45:7–19.

    PubMed  CAS  Google Scholar 

  16. Fargašsová A (1994) Comparative toxicity of five chemicals on various biological subjects. Bull Environ Contam Toxicol 53:317–324.

    Article  Google Scholar 

  17. Ghosh SK, Doctor PB, Kulkarni PK (1996) Toxicity of zinc in three microbial test systems. Environ Toxicol Water Qual 11:13–19.

    Article  CAS  Google Scholar 

  18. Ribó JM, Yang JE, Huang PM(1989) Luminescent bacteria toxicity bioassay in the study of mercury speciation. Hydrobiologia 188/189:155–162.

    Google Scholar 

  19. Backman P, Bastos M, Briggner LE, Hägg S, Hallén D, Lönnbro P, Nilsson SO, Olofsson G, Schön A, Suurkuusk J, Teixeira C, Wadsö I, (1994) A system of microcalorimeters. Pure Appl Chem 66:375–382.

    Article  Google Scholar 

  20. Prado AGS, Airoldi C (2001) Microcalorimetry of the degradation of the herbicide 2,4-D via the microbial population on a typical Brazilian red Latosol soil. Thermochim Acta 371:169–174.

    Article  CAS  Google Scholar 

  21. Critter SAM, Freitas SS, Airoldi C, (2002) Comparison between microorganism counting and a calorimetric method applied to tropical soils. Thermochim Acta 394:133–144.

    Article  CAS  Google Scholar 

  22. Critter SAM, Freitas SS, Airoldi C (2002) Microbial biomass and microcalorimetric methods in tropical soils. Thermochim Acta 394:145–154.

    Article  CAS  Google Scholar 

  23. Angelika R, Ian AM, Janice ET (2007) Microbial community development in the rhizosphere of apple trees at a replant disease site. Soil Biol Biochem 39:1645–1654.

    Article  Google Scholar 

  24. Lantz AE, Jørgensen P, Poulsen E, Lindemann C, Olsson L (2006) Determination of cell mass and polymyxin using multi-wavelength fluorescence. J Biotechnol 121:544–554.

    Article  Google Scholar 

  25. Yao J, Tian L, Wang Y, Djah A, Wang F, Chen H, Su C, Zhuang R, Zhou Y, Choi MMF, Bramanti E (2008) Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: an in vitro approach. Ecotox Environ Safe 69:289–295.

    Article  CAS  Google Scholar 

  26. Wang J, Li S, Huang Z (2003) Environmental microbiology, High Education Press, Beijing, pp 311.

    Google Scholar 

  27. Chen CY, Liu Y, Zhou JY, Xu HB, Qu SS (1997) Microcalorimetric study of the toxic effect of selenium on the mitochondrial metabolism of Cyrinus carpio liver. Biol Trace Elem Res 60:115–163.

    Article  PubMed  CAS  Google Scholar 

  28. Thomas DJ, Styblo M, Lin S (2001) The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharm 176:127–144.

    Article  CAS  Google Scholar 

  29. Ellenhorn MJ (1997) Ellenhorn’s Medical toxicology: diagnosis and treatment of human poisoning, second ed., Williams & Wilkins, Baltimore, p. 1540.

    Google Scholar 

  30. Endo G, Kuroda K, Okamoto A, Hiriguchi S (1992) Dimethylarsenic acid induces tetraploids in Chinese hamster cells. Bull. Environ Contam Toxicol 48:131–137.

    Article  PubMed  CAS  Google Scholar 

  31. Eguchi N, Kuroda K, Endo G (1997) Metabolites of arsenic induced tetraploids and mitotic arrest in cultured cells. Arch Environ Contam Toxicol 32:141–145.

    Article  PubMed  CAS  Google Scholar 

  32. Tezuka M, Hanioka K, Yamanaka K, Okada S (1993) Gene damage induced in human alveolar type II (L-132) cells by exposure to dimethylarsinic acid. Biochem Biophys Res Commun 191:1178–1183.

    Article  PubMed  CAS  Google Scholar 

  33. Yamanaka K, Hayashi H, Kato K, Hasegaw A, Okada S (1995) Involvement of preferential formation of apurinic/apyrimidinic sites in dimethylarsenic-induced DNA strand breaks and DNA-protein crosslinks in cultured alveolar epithelial cells. Biochem Biophys Res Commun 207:244–249.

    Article  PubMed  CAS  Google Scholar 

  34. Seike N, Wanibuchi H, Morimura K, Nishikawa T, Kishida H, Nakae D, Hirata K, Fukushima S (2002) Lack of promoting effect due to oral administration of dimethylarsinic acid on rat lung carcinogenesis initiated with N-bis(2-hydroxypropyl)nitrosamine. Cancer Lett 175:113–119.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Sino-Italian, Sino-German PPP, Sino-Hungarian, Sino-Slovenian Governmental International Scientific and Technological Cooperation Project (200625, 20063139, 2006294, and 2007203), National Natural Science Foundation of China (40425001 and 40673065), the Specialized Research Fund for the Doctoral Program of Higher Education (20060491508), the Key Project of Chinese Ministry of Education (107077), the Hubei Key International Cooperation Project (2006CA007), and 111 project (B08030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yao or Martin M. F. Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russel, M., Yao, J., Chen, H. et al. Biological and Microcalorimetric Studies of the Toxic Effect of Organoarsenic(V) Compounds to Wild Strain of Bacillus thuringiensis . Biol Trace Elem Res 131, 192–203 (2009). https://doi.org/10.1007/s12011-009-8358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8358-1

Keywords

Navigation