Skip to main content
Log in

Effect of Sub-deficient Zinc Status on Insulin Sensitivity after Burn Injury in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Although zinc status is an important parameter in insulin sensitivity, data concerning its implication in noxious burn-induced insulin resistance are scarce. The present study was designed to evaluate the impact of zinc status before burn on the recovery of injury with focus on plasma insulin and glucose levels. The experiment was performed in male adult Wistar rats fed from weaning with a zinc normal diet (80 ppm) or a depleted zinc diet (10 ppm) for 8 weeks and burned to third degree on 20% of their total body surface area. Blood and tissue samples were collected 3, 6, and 24 h after injury in order to study biochemical parameters and the glucose/insulin response in relation with the zinc status. After burn, zinc-depleted rats presented an exacerbated decrease in plasma zinc level. In addition, the burn-induced insulin resistance, leading to protein catabolism, was emphasized, with higher plasma insulin, glucose, and leptin levels in zinc-deficient animals versus normal-fed rats. Our experimental results underlined the interest to early control the zinc status in order to limit the deleterious effects of oxidative stress and insulin resistance in burned patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carter EA (1998) Insulin resistance in burns and trauma. Nutr Rev 56:S170–S176

    Article  PubMed  CAS  Google Scholar 

  2. Longarela A, Olarra J, Suarez L, Garcia de Lorenzo A (2000) Metabolic response to stress, can we control it. Nutr Hosp 15(6):275–279

    PubMed  CAS  Google Scholar 

  3. Gore DC, Chinkes D, Heggers J, Herndon DN, Wolf SE, Desai M (2001) Association of hyperglycemia with increased mortality after severe burn injury. J Trauma 51(3):540–544

    Article  PubMed  CAS  Google Scholar 

  4. Wu X, Thomas SJ, Herndon DN, Sanford AP, Wolf SE (2004) Insulin decreases hepatic acute phase protein levels in severely burned children. Surgery 135(2):196–202

    Article  PubMed  Google Scholar 

  5. Solomon V, Madihally S, Mitchell RN, Yarmush M, Toner M (2002) Antiproteolytic action of insulin in burn-injured rats. J Surg Res 105(2):234–242

    Article  PubMed  CAS  Google Scholar 

  6. Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317(7):403–408

    PubMed  CAS  Google Scholar 

  7. Burke JF, Wolfe RR, Mullany CJ, Mathews DE, Bier DM (1979) Glucose requirements following burn injury. Parameters of optimal glucose infusion and possible hepatic and respiratory abnormalities following excessive glucose intake. Ann Surg 190(3):274–285

    Article  PubMed  CAS  Google Scholar 

  8. Anderson RA, Sandre C, Bryden NA, Agay D, Chancerelle Y, Polansky MM, Roussel AM (2006) Burn-induced alterations of chromium and the glucose/insulin system in rats. Burns 32(1):46–51

    Article  PubMed  Google Scholar 

  9. Quarterman J, Mills CF, Humphries WR (1966) The reduced secretion of, and sensitivity to insulin in zinc-deficient rats. Biochem Biophys Res Commun 25(3):354–358

    Article  PubMed  CAS  Google Scholar 

  10. Arquilla ER, Packer S, Tarmas W, Miyamoto S (1978) The effect of zinc on insulin metabolism. Endocrinology 103(4):1440–1449

    Article  PubMed  CAS  Google Scholar 

  11. Brun JF, Guintrand-Hugret R, Fons C, Carvajal J, Fedou C, Fussellier M, Bardet L, Orsetti A (1995) Effects of oral zinc gluconate on glucose effectiveness and insulin sensitivity in humans. Biol Trace Elem Res 47(1–3):385–391

    Article  PubMed  CAS  Google Scholar 

  12. Chen MD, Liou SJ, Lin PY, Yang VC, Alexander PS, Lin WH (1998) Effects of zinc supplementation on the plasma glucose level and insulin activity in genetically obese (ob/ob) mice. Biol Trace Elem Res 61(3):303–311

    Article  PubMed  CAS  Google Scholar 

  13. Coulston L, Dandona P (1980) Insulin-like effect of zinc on adipocytes. Diabetes 29(8):665–667

    Article  PubMed  CAS  Google Scholar 

  14. Selmanpakoglu AN, Cetin C, Sayal A, Isimer A (1994) Trace element (Al, Se, Zn, Cu) levels in serum, urine and tissues of burn patients. Burns 20(2):99–103

    Article  PubMed  CAS  Google Scholar 

  15. Bang RL, Mattappallil AB, Dashti HM, Al-Bader AA (2000) Thermal injury and changes in the trace elements. J Trace Elem Exp Med 13(1):255–264

    Article  CAS  Google Scholar 

  16. Berger MM, Cavadini C, Bart A, Mansourian R, Guinchard S, Bartholdi I, Vandervale A, Krupp S, Chiolero R, Freeman J et al (1992) Cutaneous copper and zinc losses in burns. Burns 18(5):373–380

    Article  PubMed  CAS  Google Scholar 

  17. Holden JM, Wolf WR, Mertz W (1979) Zinc and copper in self-selected diets. J Am Diet Assoc 75(1):23–28

    PubMed  CAS  Google Scholar 

  18. Abdulla M, Behbehani A, Dashti H (1989) Dietary intake and bioavailability of trace elements. Biol Trace Elem Res 21:173–178

    Article  PubMed  CAS  Google Scholar 

  19. Otsuka Y, Isomoto S, Noda H (2000) Dietary intake of trace elements in the general population, estimated from a regional nutritional survey, and comparison with recommended dietary allowances and tolerable upper intake levels. Nippon Koshu Eisei Zasshi 47(9):809–819

    PubMed  CAS  Google Scholar 

  20. AREDS Research Group (2002) The effect of five-year zinc supplementation on serum zinc, serum cholesterol and hematocrit in persons randomly assigned to treatment group in the age-related eye disease study: AREDS Report No. 7. J Nutr 132:697–702

    Google Scholar 

  21. Walker HL, Mason AD Jr (1968) A standard animal burn. J Trauma 8(6):1049–1051

    Article  PubMed  CAS  Google Scholar 

  22. Arnaud J, Bellanger J, Bienvenu F, Chappuis P, Favier A (1986) Recommended method for assaying serum zinc with flame atomic absorption. Ann Biol Clin 44(1):77–87

    CAS  Google Scholar 

  23. Arnaud J, Chappuis P, Zawislak R, Jaudon MC, Bellanger J (1989) Determination of trace elements by an assay using flameless atomic absorption spectrometry. Ann Biol Clin 47(10):583–595

    CAS  Google Scholar 

  24. Berger MM, Spertini F, Shenkin A, Wardle C, Wiesner L, Schindler C, Chiolero RL (1998) Trace element supplementation modulates pulmonary infection rates after major burns: a double-blind, placebo-controlled trial. Am J Clin Nutr 68(2):365–371

    PubMed  CAS  Google Scholar 

  25. Sandstead HH, Lanier VC Jr., Shephard GH, Gillespie DD (1970) Zinc and wound healing. Effects of zinc deficiency and zinc supplementation. Am J Clin Nutr 23(5):514–519

    PubMed  CAS  Google Scholar 

  26. Ding HQ, Zhou BJ, Liu L, Cheng S (2002) Oxidative stress and metallothionein expression in the liver of rats with severe thermal injury. Burns 28(3):215–221

    Article  PubMed  CAS  Google Scholar 

  27. Sandre C, Agay D, Ducros V, Van Uye A, Cruz C, Chancerelle Y, Roussel AM (2004) Early evolution of selenium status and oxidative stress parameters in rat models of thermal injury. J Trace Elem Med Biol 17(4):313–318

    Article  PubMed  CAS  Google Scholar 

  28. Sabeh F, Baxter CR, Norton SJ (1995) Skin burn injury and oxidative stress in liver and lung tissues of rabbit models. Eur J Clin Chem Clin Biochem 33(6):323–328

    PubMed  CAS  Google Scholar 

  29. Tang ZJ (1991) Alterations in insulin receptor in injured rats and the effects of dexamethasone and silybin. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi 7(3):214–217

    PubMed  CAS  Google Scholar 

  30. Wolfe RR, Durkot MJ, Allsop JR, Burke JF (1979) Glucose metabolism in severely burned patients. Metabolism 28(10):1031–1039

    Article  PubMed  CAS  Google Scholar 

  31. Carter EA, Tompkins RG, Burke JF (1988) Hepatic and intestinal blood flow following thermal injury. J Burn Care Rehabil 9(4):347–350

    PubMed  CAS  Google Scholar 

  32. Ikezu T, Okamoto T, Yonezawa K, Tompkins RG, Martyn JA (1997) Analysis of thermal injury-induced insulin resistance in rodents. Implication of postreceptor mechanisms. J Biol Chem 272(40):25289–25295

    Article  PubMed  CAS  Google Scholar 

  33. Thorell A, Hirshman MF, Nygren J, Jorfeldt L, Wojtaszewski JF, Dufresne SD, Horton ES, Ljungqvist O, Goodyear LJ (1999) Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. Am J Physiol 277:E733–E741

    PubMed  CAS  Google Scholar 

  34. Peter FW, Schuschke DA, Barker JH, Fleishcher-Peter B, Pierangeli S, Vogt PM, Steinau HU (1999) The effect of severe burn injury on proinflammatory cytokines and leukocyte behavior: its modulation with granulocyte colony-stimulating factor. Burns 25(6):477–486

    Article  PubMed  CAS  Google Scholar 

  35. Reyes R Jr, Wu Y, Lai Q, Mrizek M, Berger J, Jimenez DF, Barone CM, Ding Y (2006) Early inflammatory response in rat brain after peripheral thermal injury. Neurosci Lett 407(1):11–15

    Article  PubMed  CAS  Google Scholar 

  36. Hotamisligil GS (1999) The role of TNFalpha and TNF receptors in obesity and insulin resistance. J Intern Med 245(6):621–625

    Article  PubMed  CAS  Google Scholar 

  37. Losser MR, Bernard C, Beaudeux JL, Pison C, Payen D (1997) Glucose modulates hemodynamic, metabolic, and inflammatory responses to lipopolysaccharide in rabbits. J Appl Physiol 83(5):1566–1574

    PubMed  CAS  Google Scholar 

  38. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779):787–790

    Article  PubMed  CAS  Google Scholar 

  39. Correia ML, Rahmouni K (2006) Role of leptin in the cardiovascular and endocrine complications of metabolic syndrome. Diabetes Obes Metab 8(6):603–610

    Article  PubMed  CAS  Google Scholar 

  40. Haase H, Maret W (2005) Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Biometals 18(4):333–338

    Article  PubMed  CAS  Google Scholar 

  41. Haase H, Maret W (2003) Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res 291(2):289–298

    Article  PubMed  CAS  Google Scholar 

  42. Agay D, Andriollo-Sanchez M, Claeyssen R, Touvard L, Denis J, Roussel A, Chancerelle Y (2008) Interleukin-6, TNF-alpha and interleukin-1 beta levels in blood and tissues in severely burned rats. European Cytokine Network 19:1–7

    PubMed  CAS  Google Scholar 

  43. Yamada Y, Endo S, Inada K (1996) Plasma cytokine levels in patients with severe burn injury with reference to the relationship between infection and prognosis. Burns 22(8):587–593

    Article  PubMed  CAS  Google Scholar 

  44. Yeh FL, Lin WL, Shen HD, Fang RH (1999) Changes in circulating levels of interleukin 6 in burned patients. Burns 25(2):131–136

    Article  PubMed  CAS  Google Scholar 

  45. Lee DK, Carrasco J, Hidalgo J, Andrews GK (1999) Identification of a signal transducer and activator of transcription (STAT) binding site in the mouse metallothionein-I promoter involved in interleukin-6-induced gene expression. Biochem J 337:59–65

    Article  PubMed  CAS  Google Scholar 

  46. Cousins KJ (1985) Hormonal regulation of zinc metabolism in liver cells. in Mills CF, Bremner I, Chesters IK (eds) Trace elements in man and animals, Commonwealth Agricultural Bureaux, vol 5, pp 984–990

  47. Beattie H, Bremner I (2000) Metallothioneins: their cellular function and relationship with zinc. In: Roussel AM, Anderson RA, Favier AE (eds) Trace elements in man and animals. Kluwer/Plenum, New York, pp 961–967

    Google Scholar 

  48. Kelly EJ, Sandgren EP, Brinster RL, Palmiter RD (1997) A pair of adjacent glucocorticoid response elements regulate expression of two mouse metallothionein genes. Proc Natl Acad Sci U S A 94(19):10045–10050

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Coulon and A. Zocaro for their excellent technical assistance.

This experimental work was supported by a grant from “Délégation Générale à l’Armement” (France).

Conflict of interest statement

The authors have no financial or proprietary interest in the subject matter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane Agay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claeyssen, R., Andriollo-Sanchez, M., Arnaud, J. et al. Effect of Sub-deficient Zinc Status on Insulin Sensitivity after Burn Injury in Rats. Biol Trace Elem Res 127, 132–142 (2009). https://doi.org/10.1007/s12011-008-8226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8226-4

Keywords

Navigation