Skip to main content
Log in

Dose- and Time-Dependent Effects of Luteolin on Liver Metallothioneins and Metals in Carbon Tetrachloride-Induced Hepatotoxicity in Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the protective effect of luteolin on liver Ca, Mg, Zn, Cu, Fe, and Mn content in mice with carbon tetrachloride (CCl4)-induced hepatotoxicity. Additionally, liver metallothionein (MT) expression was studied. Luteolin was administered intraperitoneally (i.p.) as a single 5- or 50-mg/kg dose or once daily for two consecutive days, respectively. Two hours after the last injection, the mice were treated with CCl4 (20 mg/kg, i.p.). CCl4 injection reduced hepatic level of all metals except Ca, with an intense cytoplasmic staining pattern in hepatocytes located in periportal areas, indicating induction of MTs. Pretreatment with 50 mg/kg of luteolin for 2 days remarkably elevated metal content to control values (Mg and Cu) or even above them (Zn and Fe). Luteolin pretreatment increased pericentral MTs immunopositivity and histological architecture improvement in a time- and dose-dependent manner, being the most prominent in mice pretreated with 50 mg/kg for 2 days. The liver in this group showed pronounced MT expression in almost all hepatocytes throughout the liver parenchyma. In conclusion, these results suggest the protective effect of luteolin on CCl4-induced hepatotoxicity and an enhancement of hepatocyte proliferative capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brattin WJ, Glende EA Jr, Recknagel RO (1985) Pathological mechanisms in carbon tetrachloride hepatotoxicity. J Free Radic Biol Med 1:27–38

    Article  PubMed  CAS  Google Scholar 

  2. Williams T, Burk RF (1990) Carbon tetrachloride hepatotoxicity: an example of free radical-mediated injury. Semin Liver Dis 10:279–284

    Article  PubMed  CAS  Google Scholar 

  3. Recknagel RO, Glende EA Jr, Dolak JA et al (1989) Mechanisms of carbon tetrachloride toxicity. Pharmacol Ther 43:139–154

    Article  PubMed  CAS  Google Scholar 

  4. Brautbar N, Williams J 2nd (2002) Industrial solvents and liver toxicity: risk assessment, risk factors and mechanisms. Int J Hyg Environ Health 205:479–491

    Article  PubMed  CAS  Google Scholar 

  5. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  6. McClain J, Marsano L, Burk RF et al (1991) Trace metals in liver disease. Semin Liver Dis 11:321–339

    Article  PubMed  CAS  Google Scholar 

  7. Coyle P, Philcox JC, Carey LC et al (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    Article  PubMed  CAS  Google Scholar 

  8. Andrews GK (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 59:95–104

    Article  PubMed  CAS  Google Scholar 

  9. Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    PubMed  CAS  Google Scholar 

  10. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202

    Article  PubMed  CAS  Google Scholar 

  11. Kuo SM, Leavitt PS, Lin CP (1998) Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells. Biol Trace Elem Res 62:135–153

    Article  PubMed  CAS  Google Scholar 

  12. Ziyan L, Yongmei Z, Nan Z et al (2007) Evaluation of the anti-inflammatory activity of luteolin in experimental animal models. Planta Med 73:221–226

    Article  PubMed  CAS  Google Scholar 

  13. Veda H, Yamazaki C, Yamazaki M (2002) Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biol Pharm Bull 25:1197–1202

    Article  Google Scholar 

  14. Ju W, Wang X, Shi H et al (2007) A critical role of luteolin-induced reactive oxygen species in blockage of tumor necrosis factor-activated nuclear factor-kappaB pathway and sensitization of apoptosis in lung cancer cells. Mol Pharmacol 71:1381–1388

    Article  PubMed  CAS  Google Scholar 

  15. Coleta M, Campos MG, Cotrim MD et al (2008) Assessment of luteolin (3¢,4¢,5,7-tetrahydroxyflavone) neuropharmacological activity. Behav Brain Res 189:75–82

    Article  PubMed  CAS  Google Scholar 

  16. Woodman OL, Chan ECH (2004) Vascular and anti-oxidant actions of flavonols and flavones. Clin Exp Pharmacol Physiol 31:786–790

    Article  PubMed  CAS  Google Scholar 

  17. Perez-Garcia F, Adzet T, Canigueral S (2000) Activity of artichoke leaf extract on reactive oxygen species in human leukocytes. Free Radic Res 33:661–665

    Article  PubMed  CAS  Google Scholar 

  18. Cholbi MR, Paya M, Alcaraz MJ (1991) Inhibitory effects of phenolic compounds on CCl4-induced microsomal lipid peroxidation. Experientia 47:195–199

    Article  PubMed  CAS  Google Scholar 

  19. Domitrović R, Tota M, Milin Č (2006) Oxidative stress in mice: effects of dietary corn oil and iron. Biol Trace Elem Res 113:177–191

    Article  PubMed  Google Scholar 

  20. Jakovac H, Grebić D, Mrakovčić-Šutić I et al (2006) Metallothionein expression and tissue metal kinetics after partial hepatectomy in mice. Biol Trace Elem Res 114:249–268

    Article  PubMed  CAS  Google Scholar 

  21. Slater TF (1966) Necrogenic action of carbon tetrachloride in the rat: a speculative mechanism based on activation. Nature 209:36–40

    Article  PubMed  CAS  Google Scholar 

  22. Theocharis SE, Margeli AP, Skaltsas SD et al (2001) Induction of metallothionein in the liver of carbon tetrachloride intoxicated rats: an immunohistochemical study. Toxicology 161:129–138

    Article  PubMed  CAS  Google Scholar 

  23. Hendriks JJ, Alblas J, van der Pol SM et al (2004) Flavonoids influence monocytic GTPase activity and are protective in experimental allergic encephalitis. J Exp Med 200:1667–1672

    Article  PubMed  CAS  Google Scholar 

  24. Fang J, Zhou Q, Shi XL, Jiang BH (2007) Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells. Carcinogenesis 28:713–723

    Article  PubMed  CAS  Google Scholar 

  25. Chiang CT, Way TD, Lin JK (2007) Sensitizing HER2-overexpressing cancer cells to luteolin-induced apoptosis through suppressing p21(WAF1/CIP1) expression with rapamycin. Mol Cancer Ther 6:2127–2138

    Article  PubMed  CAS  Google Scholar 

  26. Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5:836–847

    Article  PubMed  CAS  Google Scholar 

  27. Fausto N, Campbell JS, Riehle KJ (2006) Liver regeneration. Hepatology 43:S45–45

    Article  PubMed  CAS  Google Scholar 

  28. Cherian MG, Kang YJ (2006) Metallothionein and liver cell regeneration. Exp Biol Med (Maywood) 231:138–144

    CAS  Google Scholar 

  29. Oh SH, Deagen JT, Whanger PD et al (1978) Biological function of metallothionein. V. Its induction in rats by various stresses. Am J Physiol 234:E282–285

    PubMed  CAS  Google Scholar 

  30. Le NT, Richardson DR (2002) The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim Biophys Acta 1603:31–46

    PubMed  CAS  Google Scholar 

  31. Wolf FI, Cittadini A (1999) Magnesium in cell proliferation and differentiation. Front Biosci 4:D607–617

    Article  PubMed  CAS  Google Scholar 

  32. DiSilvestro RA, Carlson GP (1992) Inflammation, an inducer of metallothionein, inhibits carbon-tetrachloride-induced hepatotoxicity in rats. Toxicol Lett 60:175–181

    Article  PubMed  CAS  Google Scholar 

  33. Clarke S, Lui EM (1986) Interaction of metallothionein and carbon tetrachloride on the protective effect of zinc on hepatotoxicity. Can J Physiol Pharmacol 64:1104–1110

    PubMed  CAS  Google Scholar 

  34. Włostowski T (1993) Involvement of metallothionein and copper in cell proliferation. Biometals 6:71–76

    Article  PubMed  Google Scholar 

  35. Sato M, Bremner I (1993) Oxygen free radicals and metallothionein. Free Radic Biol Med 14:325–337

    Article  PubMed  CAS  Google Scholar 

  36. Levadoux-Martin M, Hesketh JE, Beattie JH et al (2001) Influence of metallothionein-1 localization on its function. Biochem J 355:473–479

    Article  PubMed  CAS  Google Scholar 

  37. Quesada R, Byrnes RW, Krezoski SO et al (1996) Direct reaction of H2O2 with sulfhydryl groups in HL-60 cells: zinc-metallothionein and other sites. Arch Biochem Biophys 334:241–250

    Article  PubMed  CAS  Google Scholar 

  38. Cagen SZ, Klaasen CD (1980) Carbon tetrachloride-induced hepatotoxicity: studies in developing rats and protection by zinc. Fed Proc 39:3124–3128

    PubMed  CAS  Google Scholar 

  39. Sagher D, Brunell N, Brot BL et al (2006) Selenocompounds can serve as oxidoreductants with the methionine sulfoxide reductase enzymes. J Biol Chem 281:31184–31187

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Ministry of Science, Education and Sport, Republic of Croatia (projects No. 062-0000000-3554 and 062-0621341-0061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Domitrović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domitrović, R., Jakovac, H., Grebić, D. et al. Dose- and Time-Dependent Effects of Luteolin on Liver Metallothioneins and Metals in Carbon Tetrachloride-Induced Hepatotoxicity in Mice. Biol Trace Elem Res 126, 176–185 (2008). https://doi.org/10.1007/s12011-008-8181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8181-0

Keywords

Navigation