Skip to main content
Log in

Rubisco Activase mRNA Expression in Spinach: Modulation by Nanoanatase Treatment

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Characterized by a photocatalysis property, nanoanatase is closely related to the photosynthesis of spinach. It could not only improve light absorbance, transformation from light energy to electron energy, and active chemical energy, but also promote carbon dioxide (CO2) assimilation of spinach. However, the molecular mechanism of carbon reaction promoted by nanoanatase remains largely unclear. In this study, we report that the amounts of Rubisco activase (rca) mRNA in the nanoanatase-treated spinach were increased by about 51%, whereas bulk-TiO2 treatment produced an increase of only 5%. Accordingly, the protein level of Rubisco activase from the nanoanatase-treated spinach was increased by 42% compared with the control; however, bulk-TiO2 treatment resulted in a 5% improvement. Further analysis indicated that the activity of Rubisco activase in the nanoanatase-treated spinach was significantly higher than the control by up to 2.75 times, and bulk-TiO2 treatment had no such significant effects. Together, one of the molecular mechanisms of carbon reaction promoted by nanoanatase is that the nanoanatase treatment results in the enhancement of rca mRNA expressions, protein levels, and activities of Rubisco activase, thereby leading to the improvement of Rubisco carboxylation and the high rate of photosynthetic carbon reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Crabtree RH (1998) A new type of hydrogen bond. Science 282:2000–2001

    Article  CAS  Google Scholar 

  2. Zheng L, Hong FS, Lv SP, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):82–93

    Article  Google Scholar 

  3. Hong FS, Yang P, Gao FQ, Liu C, Zheng L, Yang F, Zhou J (2005) Effect of nano-TiO2 on spectral characterization of photosystem II particles from spinach. Chem Res Chin Univ 21(2):196–200

    CAS  Google Scholar 

  4. Hong FS, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(3):269–280

    Article  PubMed  CAS  Google Scholar 

  5. Hong FS, Yang F, Ma ZN, Zhou J, Liu C, Wu C, Yang P (2005) Influences of nano-TiO2 on the chloroplast ageing of spinach under light. Biol Trace Elem Res 104(3):249–260

    Article  PubMed  CAS  Google Scholar 

  6. Yang F, Hong FS, You WJ, Liu C, Gao FQ, Wu C, Yang P (2006) Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190

    Article  PubMed  CAS  Google Scholar 

  7. Gao FQ, Hong FS, Liu C, Zheng L, Su MY, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco–Rubisco activase. Biol Trace Elem Res 111(1–3):239–253

    Article  PubMed  CAS  Google Scholar 

  8. Zheng L, Su MY, Liu C, Chen L, Huang H, Wu X, Liu XQ, Yang F, Gao FQ, Hong FS (2007) Effects of nano-anatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 119:68–76 DOI 10.1007/s12011-007-0047-3

    Article  CAS  Google Scholar 

  9. Su MY, Wu X, Liu C, Qu CX, Liu XQ, Cheng L, Huang H, Hong FS (2007) Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biol Trace Elem Res 119:183–192. DOI 10.1007/s12011-007-0065-1

    Article  CAS  Google Scholar 

  10. Yang F, Liu C, Gao FQ, Su MY, Wu X, Zheng L, Hong FS, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88. DOI 10.1007/s12011-007-0046-4

    Article  PubMed  CAS  Google Scholar 

  11. Su MY, Liu C, Wu X, Liu XQ, Cheng L, Gao FQ, Yang F, Li ZR, Hong FS (2007) Effects of nano-anatase TiO2 on absorption, distribution of light and photochemical activities of chloroplast of spinach. Biol Trace Elem Res 118(2):120–130. DOI 10.1007/s12011-007-0006-2

    Article  CAS  Google Scholar 

  12. Gao FQ, Liu C, Qu CX, Zheng L, Yang F, Su MY, Hong FS (2007) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? BioMetals (in press). DOI 10.1007/s10534-007-9110-y

  13. Zheng L, Su MY, Wu X, Liu C, Qu CX, Chen L, Huang H, Liu XQ, Hong FS (2007) Effects of nano-anatase on spectral characteristics and distribution of LHC II on the thylakoid membranes of spinach. Biol Trace Elem Res 120(1–3):273–283. DOI 10.1007/s12011-007-8025-3

    CAS  Google Scholar 

  14. Zheng L, Su MY, Wu X, Liu C, Qu CX, Chen L, Huang H, Liu XQ, Hong FS (2007) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res DOI 10.1007/s12011-007-8028-0

  15. Hong FS, Liu C, Zheng L, Wang XF, Wu K, Song WP, Lv SP, Tao Y, Zhao GW (2005) Formation of Complexes of Rubisco–Rubisco activase from La3+, Ce3+ treatment spinach. . Sci China Ser B Chem 48(1):67–74

    Article  CAS  Google Scholar 

  16. Robert JS (1999) Questions about the complexity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Photosynth Res 60:29–42

    Article  Google Scholar 

  17. Keegstra K, Olsen LJ, Theg SM (1989) Chloroplastic precursors and their transport across the envelope membranes. Annu Rev Plant Physiol Plant Mol Biol 40:471–501

    Article  CAS  Google Scholar 

  18. Chua NH, Schmidt GW (1979) Transport of proteins into mitochondria and chloroplasts. J Cell Biol 81:461–483

    Article  PubMed  CAS  Google Scholar 

  19. Portis AR Jr, Salvucci ME, Ogren WL (1986) Activation of ribulosebisphosphate carboxylase/oxygenase at physiological CO2 and ribulosebisphosphate concentrations by Rubisco activase. Plant Physiol 82:967–971

    PubMed  CAS  Google Scholar 

  20. Portis AR Jr (1995) The regulation of Rubisco by Rubisco activase. J Exp Bot 46:1285–1291

    CAS  Google Scholar 

  21. Jimenez ESD, Medrano L, Martinez-Barajas E (1995) Rubisco activae, a possible new member of the molecular chaperonefamily. Bichemistry 34:2826–2831

    Google Scholar 

  22. Han Y, Chen G, Wang Z (2000) The progress of studies on Rubisco activase. Chinese Bulletin of Botany 17(4):306–311. (in Chinese)

    Google Scholar 

  23. Robinson SP, Streusand VJ, Chatifield JM, Portis AR Jr (1988) Purification and assay of Rubisco activase from leaves. Plant Physiol 88:1008–1014

    PubMed  CAS  Google Scholar 

  24. Lan Y, Mott KA (1991) Determination of apparent Km values for ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase using the spectrophotometric assay of Rubisco activity. Plant Physiol 95:604–609

    Article  PubMed  CAS  Google Scholar 

  25. Robert LH, Portis AR (2003) The life of ribulose-1,5-bisphosphate carboxylase/oxygenase-posttranslational facts and mysteries. Arch Biochem Biophys 414:150–158

    Google Scholar 

  26. Liu C, Hong FS, Wu K, Ma HB, Zhang XG, Hong CJ, Wu C, Gao FQ, Yang F, Zheng L, Wang XF, Liu T, Xie YN, Xu JH, Li ZR (2006) Effect of Nd3+ ion on carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach. Biochemical and Biophysical Research Communications 342(1):36–43

    Article  PubMed  CAS  Google Scholar 

  27. Yang P, Lu C, Hua N, Du Y (2002) Titanim dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater Lett 57:794–801

    Article  CAS  Google Scholar 

  28. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    PubMed  CAS  Google Scholar 

  29. Wang WG, Li LR (1980) A simplified purification method of RuBP carboxylase from spinach leaves. Acta Phytophysiologica Sinica 40(3):256–262. (in Chinese)

    Google Scholar 

  30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Laboratory Press, NewYork, pp 739–750

    Google Scholar 

  31. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci U S A 8:1991–1995

    Article  Google Scholar 

  32. Davis LG, Diber MD, Batter JF (1986) Basic methods in molecular biology. Elsevier, Paris

    Google Scholar 

  33. Sugiyama T, Nakayama N, Ogawa M, Akazawa T, Oda T (1986) Structure and function of chloroplast proteins: effect of ρ-chloromercuribenzoate treatment on the ribulose-1,5-bisphosphate carboxylase/oxygenase activity of Spinach leaf fraction protein. Arch Biochem Biophys 125:98–106

    Article  Google Scholar 

  34. Salvucci ME, Klein RR (1994) Site-directed mutagenase of reaction lysyl residue(Lys-247) of Rubisco activase. Arch Biochem Biophys 314:178–185

    Article  PubMed  CAS  Google Scholar 

  35. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  36. Tang RH, Jia JW, Li LR (1997) Purification and characterization of Rubisco activase from tobacco. Acta Phytophysiologica Sinica 23:89–95. (in Chinese)

    CAS  Google Scholar 

  37. Van de Loo FJ, Salvucci ME (1996) Activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) involves Rubisco activase Trp16. Biochemistry 35:8143–8148

    Article  PubMed  Google Scholar 

  38. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  39. To KY, Cheng MC, Chen LFO, Chen SCG (1996) Introduction and expression of foreign DNA in isolated spinach chloroplasts by electroporation. Plant J 10:737–743

    Article  PubMed  CAS  Google Scholar 

  40. Salvucci ME (1992) Subunit interactions of Rubisco activase–polyethylene glycol promotes self-association, stimulates ATPase and activation activities, and enhances interactions with Rubisco. Arch Biochem Biophys 298:688–696

    Article  PubMed  CAS  Google Scholar 

  41. To KY, Suen DF, Chen SCG (1999) Molecular characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in rice leaves. Planta 209:66–76

    Article  PubMed  CAS  Google Scholar 

  42. Zhang F, Jiang DA, Wen XY, Wang NY (2002) Changes in expression of rubisco activase from day to night in rice leave. Journal of Plant Physiology and Molecular Biology 28(1):37–40. (in Chinese)

    Google Scholar 

  43. Wayne MC, Anthony KB, David LO, Kenneth WJ (2004) Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coord Chem Rev 248:817–833

    Article  CAS  Google Scholar 

  44. Abbott MS, Bogorad L (1987) Light regulation of genes for the large and small subunits of ribulose phosphate carboxylase in tobacco. Progress in Photosynthesis Research 4:527

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 20671067), the Jiangsu Province Universities Natural Science Foundation (grant no. 06KJB180094), and the Medical Development Foundation of Suzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Fashui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linglan, M., Chao, L., Chunxiang, Q. et al. Rubisco Activase mRNA Expression in Spinach: Modulation by Nanoanatase Treatment. Biol Trace Elem Res 122, 168–178 (2008). https://doi.org/10.1007/s12011-007-8069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8069-4

Keywords

Navigation