Skip to main content
Log in

Influence of Fluoride on Rat Kidney Antioxidant System: Effects of Methionine and Vitamin E

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the study has been to determine and compare the influence upon the kidney antioxidative system, exercised by administration of vitamin E, and vitamin E in combination with methionine, under conditions of oxidative stress induced by sodium fluoride. The experiment was carried out on Wistar FL rats (adult males) that, for 35 days, were administered water, NaF, NaF with vitamin E, or vitamin E with methionine (doses: 10 mg NaF/kg of body mass/24 h, 3 mg vitamin E per 10 μl per rat for 24 h, 2 mg methionine per rat for 24 h). The influence of administered sodium fluoride and antioxidants upon the antioxidative system in kidney was examined by analyzing the concentration of malondialdehyde (MDA) and the activity of the most important antioxidative enzymes (SOD, total and both its isoenzymes, GPX, GST, GR, and CAT). The studies carried out confirmed the disadvantageous effect of the administered dose of NaF upon the antixodiative system in rats (increase in the concentration MDA, decrease activity of all antioxidative enzymes). The administration of vitamin E increased the activity of studied enzymes with the exception of glutathione reductase GR; it also reduced the procesess of lipid peroxidation. It has been found that combined doses of vitamin E and methionine were most effective in inhibiting lipid peroxidation processes. The results confirmed the antioxidative properties of methionine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now. J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  2. Chlubek D (2003) Fluoride and oxidative stress. Fluoride 36:217–228

    CAS  Google Scholar 

  3. Chinoy NJ (2003) Fluoride stress on antioxidant defence systems. Fluoride 36:138–141

    Google Scholar 

  4. Esterbauer H, Zollner H (1989) Methods for determination of aldehydic lipid peroxidation products. Free Radical Biol Med 7:197–203

    Article  CAS  Google Scholar 

  5. Schwenke DC (1998) Antioxidants and atherogenesis. J Nutr Biochem 9:424–445

    Article  CAS  Google Scholar 

  6. Fridivich I (1995) Superoxide radical and superoxide dismutases. Ann Rev Biochem 64:97–112

    Article  Google Scholar 

  7. Meister A, Anderson ME (1983) Glutathione. Ann Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  8. Gaetani GF, Kirkman HN, Mangerini R, Ferraris AM (1994) Importance of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 84:325–330

    PubMed  CAS  Google Scholar 

  9. Brigelius-Flohe R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27:951–965

    Article  PubMed  CAS  Google Scholar 

  10. Boon PJ, Marinho HS, Oosting R, Mulder GJ (1999) Glutathione conjugation of 4-hydroxy-trans-2,3-nonenal in the rat in vivo, the isolated perfused liver and erythrocytes. Toxicol Appl Pharmacol 159:214–223

    Article  PubMed  CAS  Google Scholar 

  11. Laurent A, Perdu-Durand E, Alary J, Debrauwer L, Cravedi JP (2000) Metabolism of 4-hydroxynonenal, a cytotic product of lipid peroxidation, in precision-cut liver slices. Toxicol Lett 114:203–214

    Article  PubMed  CAS  Google Scholar 

  12. Garlick PJ (2006) Toxicity of methionine in humans. J Nutr 136:1722–1726

    Google Scholar 

  13. Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  PubMed  CAS  Google Scholar 

  14. Stadtman ER, Moskovitz J, Levine RL (2003) Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Signal 5:577–582

    Article  PubMed  CAS  Google Scholar 

  15. Birkner E (2002) Influence of antioxidative factors, fluorine and selenium on development experimental hypercholesterolemia in rabbits. Ann Acad Med Siles 44:1–181

    Google Scholar 

  16. Ohkawa H, Ohishi N, Yagi K (1979) Assay for peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  17. Oyanagui Y (1984) Revaluation of assay methods and establishment of kid for superoxide dismutase activity. Annal Biochem 142:290–296

    Article  CAS  Google Scholar 

  18. Paglia D, Valentine W (1967) Studies on the quantities and qualitative characterisation of erythrocyte glutatione peroxidase. J Lab Clin 70:158–169

    CAS  Google Scholar 

  19. Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  PubMed  CAS  Google Scholar 

  20. Richterich R (1971) Clinical chemistry. 2. PZWL, Warsaw

    Google Scholar 

  21. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    PubMed  CAS  Google Scholar 

  22. Zhi-Zhong G, Pei-Si Y, Nai-Den Y, Zong-Jie Z (1989) An experimental study of blood biochemical diagnostic indices for chronic fluorosis. Fluoride 22:112–118

    Google Scholar 

  23. Rzeuski R, Chlubek D, Machoy Z (1998) Interactions between fluoride and biological free radical reactions. Fluoride 31:43–45

    CAS  Google Scholar 

  24. Shivashankara YM, Shivashankara AR, Gopalakrishna Bhat P, Hanumanth Rao S (2001) Effect of fluoride intoxication on lipid peroxidation and antioxidant systems in rats. Fluoride 34:108–113

    CAS  Google Scholar 

  25. Inkiewicz I, Krechniak J (2003) Fluoride content in soft tissues and urine of rats exposed to sodium fluoride in drinking water. Fluoride 36:263–266

    Google Scholar 

  26. Sashi A, Aihgh JP, Thapar SP (2002) Toxic effect of fluoride on rabbit kidney. Fluoride 35:38–50

    Google Scholar 

  27. Grucka-Mamczar E, Birkner E, Polaniak R, Stawiarska-Pięta B, Cegłowska A, Gajda M (2003) Disturbances of kidney function in young rats after chronic exposure to NaF contained in drinking water. Ann Acad Med Siles 54–55: 9– 14

    CAS  Google Scholar 

  28. Birkner E, Grucka-Mamczar E, Żwirska-Korczala K, Zalejska-Fiolka J, Stawiarska-Pięta B, Kasperczyk S, Kasperczyk A (2006) Influence of sodium fluoride and caffeine on the kidney function and free-radical processes in that organ in adult rats. Biol Trace Elem Res 109:35–47

    Article  PubMed  CAS  Google Scholar 

  29. Dote T, Kono K, Usuda K, Nishiura H, Tagawa T (2000) Acute renal damage dose response in rats to intravenous infusion of sodium fluoride. Fluoride 33:210–217

    CAS  Google Scholar 

  30. Pacanis A (1996) Antioxidant vitamins in prevention of atherosclerosis. Diagn Lab 32:589–595

    Google Scholar 

  31. Packer JE, Slater TF, Willson RL (1979) Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278:737–738

    Article  PubMed  CAS  Google Scholar 

  32. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, a tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    Article  PubMed  CAS  Google Scholar 

  33. Yamashita N, Murata M, Inaue S, Burkitt M, Milne L, Kawanishi S (1998) Alpha-tocopherol induces oxidative damage to DNA in the presence of copper (II) ion. Chem Res Toxicol 11:855–862

    Article  PubMed  CAS  Google Scholar 

  34. Stadtman ER, Moskovitz J, Berlett BS, Levine RL (2002) Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mehcanism. Mol Cell Biochem 234–235:3–9

    Article  PubMed  Google Scholar 

  35. Moskovitz J (2005) Methionine sulfoxide reductases: ubiquitous enzymes invoived in antioxidant defense, protein regulation and prevention of aging-related diseases. Biochim Biophys Acta 1703:213–219

    PubMed  CAS  Google Scholar 

  36. Patra RC, Swarup D, Dwivedi SK (2001) Antioxidant effects of a tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology 162:81–88

    Article  PubMed  CAS  Google Scholar 

  37. Peterson FJ, Lindemann NJ, Duquette PH, Holtzman JL (1992) Potentiation of acute acetaminophen lethality by selenium and vitamin E deficiency in mice. J Nutr 122:74–81

    PubMed  CAS  Google Scholar 

  38. Maulik G, Ghosh N, Sengupta T, Chattopadhyay D, Chakraborty AK, Chatterjee GC (1992) Curative effect of methionine on certain enzymes of chick kidney cortex under lanthanum toxicity situation. Indian J Exp Biol 30:1166–1169

    PubMed  CAS  Google Scholar 

  39. Xie L, Gao Q, Xu H (2003) Ameliorative effect of L-methionine on Pb-exposed mice. Biol Trace Elem Res 93:227–236

    Article  PubMed  CAS  Google Scholar 

  40. Patra RC, Swarup D (2004) Effect of antioxidant ascorbic acid, l-methionine or a tocopherol alone or along with chelator on cardiac tissue of lead-treated rats. Veterinarski Archiv 74:235–244

    CAS  Google Scholar 

  41. Amanvermez R, Demir S, Tuncel OK, Alvur M, Agar E (2005) Alcohol-induced oxidative stress and reduction in oxidation by ascorbate/L-cys/L-met in the testis, ovary, kidney, and lung of rat. Adv Ther 22:548–558

    PubMed  CAS  Google Scholar 

  42. Slyshenkov VS, Slevalye AA, Liopo AV, Wojtczak L (2002) Protective role of l-methionine against free radical damage of rat brain synaptosomes. Acta Bioch Pol 49:907–916

    CAS  Google Scholar 

  43. Erdmann K, Grosser N, Schröder H (2005) L-methionine reduces oxidant stress in endotelial cells: role of heme oxygenase-1, ferritin, and nitric oxide. AAPS J 7:195–200

    Article  Google Scholar 

  44. Reser D, Rho M, Dewan D, Herbst L, Li G, Stupak H, Zur K, Romaine J, Frenz D, Goldbloom L, Kopke R, Arezzo J, Van-de-Water T (1999) L- and D-methionine provide long term protection against CDDP-induced ototoxicity in vivo, with partial in vitro and in vivo retention of antineoplastic activity. Neurotoxicology 20:731–748

    PubMed  CAS  Google Scholar 

  45. Abdel-WahhabMA, Nada SA, Arbid MS (1999) Ochratoxicosis: prevention of developmental toxicity by L-methionine in rats. J Appl Toxicol 19:7–12

    Article  PubMed  CAS  Google Scholar 

  46. Selvam R, Ravichandran V (1993) Restoration of tissue antioxidants and prevention of renal stone deposition in B6 deficient rats fed with vitamin E or methionine. Indian J Exp Biol 31:882–887

    PubMed  CAS  Google Scholar 

  47. Ulker S, McMaster D, McKeown PP, Bayraktutan U (2004) Antioxidant vitamins C and E ameliorate hyperglycaemia- induced oxidative stress in coronary endothelial cells. Diabetes Obes Metab 6:442–451

    Article  PubMed  CAS  Google Scholar 

  48. Dillioglugilil O (2005) Protective effects of increasing vitamin E and a doses on cisplatin-induced oxidative damage to kidney tissue in rats. Urol Int 75:340–344

    Article  PubMed  CAS  Google Scholar 

  49. Percival SS, Harris ED (1991) Regulation of Cu, Zn superoxide dismutase with . copper. Ceruloplasmin maintains level of functional enzyme activity during differentiation of K562 cells. Biochem J 274:153–158

    PubMed  CAS  Google Scholar 

  50. Mannervik B, Danielson UH (1988) Glutathione transferases- structure and catalytic activity. Crit Rev Biochem 23:283–337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Błaszczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Błaszczyk, I., Grucka-Mamczar, E., Kasperczyk, S. et al. Influence of Fluoride on Rat Kidney Antioxidant System: Effects of Methionine and Vitamin E. Biol Trace Elem Res 121, 51–59 (2008). https://doi.org/10.1007/s12011-007-8030-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8030-6

Keywords

Navigation