Skip to main content
Log in

16S rDNA-Based Amplicon Analysis Unveiled a Correlation Between the Bacterial Diversity and Antibiotic Resistance Genes of Bacteriome of Commercial Smokeless Tobacco Products

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The distribution of bacterial-derived antibiotic resistance genes (ARGs) in smokeless tobacco products is less explored and encourages understanding of the ARG profile of Indian smokeless tobacco products. Therefore, in the present investigation, ten commercial smokeless tobacco products were assessed for their bacterial diversity to understand the correlation between the inhabitant bacteria and predicted ARGs using a 16S rDNA-based metagenome analysis. Overall analysis showed the dominance of two phyla, i.e., Firmicutes (43.07%) and Proteobacteria (8.13%) among the samples, where Bacillus (9.76%), Terribacillus (8.06%), Lysinibacillus (5.8%), Alkalibacterium (5.6%), Oceanobacillus (3.52%), and Dickeya (3.1%) like genera were prevalent among these phyla. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt)-based analysis revealed 217 ARGs which were categorized into nine groups. Cationic antimicrobial polypeptides (CAMP, 33.8%), vancomycin (23.4%), penicillin-binding protein (13.8%), multidrug resistance MDR (10%), and β-lactam (9.3%) were among the top five contributors to ARGs. Staphylococcus, Dickeya, Bacillus, Aerococcus, and Alkalibacterium showed their strong and significant correlation (p value < 0.05) with various antibiotic resistance mechanisms. ARGs of different classes (blaTEM, blaSHV, blaCTX, tetX, vanA, aac3-II, mcr-1, intI-1, and intI2) were also successfully amplified in the metagenomes of SMT samples using their specific primers. The prevalence of ARGs in inhabitant bacteria of smokeless tobacco products suggests making steady policies to regulate the hygiene of commercial smokeless tobacco products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Illumina HiSeq data of this investigation has been submitted to the NCBI Sequence Read Archive (SRA) database under the BioProject accession number PRJNA1033989.

References

  1. Sinha, D. N., Gupta, P. C., Kumar, A., et al. (2018). The poorest of poor suffer the greatest burden from smokeless tobacco use: A study from 140 countries. Nicotine & Tobacco Research, 20, 1529–1532.

    Article  Google Scholar 

  2. Warnakulasuriya, S., & Straif, K. (2018). Carcinogenicity of smokeless tobacco: Evidence from studies in humans & experimental animals. Indian Journal of Medical Research, 148, 681–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siddiqi, K., Husain, S., & Vidyasagaran, A. (2020). Global burden of disease due to smokeless tobacco consumption in adults: An updated analysis of data from 127 countries. BMC Medicine, 18, 222.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bharati, B., Sahu, K. S., & Pati, S. (2023). Prevalence of smokeless tobacco use in India and its association with various occupations: A LASI study. Frontiers in Public Health, 11, 1005103.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bhandari, A., & Bhatta, N. (2021). Tobacco and its relationship with oral health. Journal of Nepal Medical Association, 59, 1204–1206.

    Article  Google Scholar 

  6. Vishwakarma, A., & Verma, D. (2021). Microorganisms: Crucial players of smokeless tobacco for several health attributes. Applied Microbiology and Biotechnology, 105, 6123–6132.

    Article  CAS  PubMed  Google Scholar 

  7. Rivera, A. J., & Tyx, R. E. (2021). Microbiology of the American smokeless tobacco. Applied Microbiology and Biotechnology, 105, 4843–4853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vishwakarma, A., & Verma, D. (2020). Exploring the microbiome of smokeless tobacco. In R. Chaudhary & A. Verma (Eds.), Microorganisms for sustainable environment and health (pp. 167–171). Elsevier.

    Chapter  Google Scholar 

  9. Srivastava, A., Mishra, S., & Verma, D. (2021). Characterization of oral bacterial composition of adult smokeless tobacco users from healthy Indians using 16S rDNA analysis. Microbial Ecology, 82, 1061–1073.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Vishwakarma, A., Srivastava, A., Mishra, S., & Verma, D. (2023a). Taxonomic and functional profiling of Indian smokeless tobacco bacteriome uncovers several bacterial-derived risks to human health. World Journal of Microbiology and Biotechnology, 39, 20.

    Article  CAS  Google Scholar 

  11. Sajid, M., Srivastava, S., Kumar, A., Kumar, A., Singh, H., & Bharadwaj, M. (2021a). Bacteriome of moist smokeless tobacco products consumed in India with emphasis on the predictive functional potential. Frontiers in Microbiology, 12, 3908.

    Article  Google Scholar 

  12. Verma, D., & Satyanarayana, T. (2011). An improved protocol for DNA extraction from alkaline soil and sediment samples for constructing metagenomic libraries. Applied Biochemistry and Biotechnology, 165, 454–464.

    Article  CAS  PubMed  Google Scholar 

  13. Quast, C., Pruesse, E., Yilmaz, P., et al. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590–D596.

    Article  CAS  PubMed  Google Scholar 

  14. Douglas, G. M., Mafei, V. J., Zaneveld, J. R., et al. (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38, 685–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Memariani, M., Peerayeh, S. N., Salehi, T. Z., & Mostafavi, S. K. (2015). Occurrence of SHV, TEM and CTX-M β-lactamase genes among enteropathogenic Escherichia coli strains isolated from children with diarrhea. Jundishapur Journal of Microbiology, 18, e15620.

    Google Scholar 

  16. Straub, L. M., Dahms, C., Becker, K., Kramer, A., Kaase, M., & Mellmann, A. (2015). Development and evaluation of a novel universal β-lactamase gene subtyping assay for blaSHV, bla TEM and blaCTX-M using clinical and livestock-associated Escherichia coli. Journal of Antimicrobial Chemotherapy, 70, 710–715.

    Article  Google Scholar 

  17. Pagani, L., Dell'Amico, E., Migliavacca, R., D'Andrea, M. M., Giacobone, E., Amicosante, G., Romero, E., & Rossolini, G. M. (2003). Multiple CTX-M-type extended-spectrum β-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. Journal of Clinical Microbiology, 41, 4264–4269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marchi, A. P., Perdigão Neto, L. V., & Martins, R. C. R. (2018). Vancomycin-resistant Enterococci isolates colonizing and infecting haematology patients: Clonality, and virulence and resistance profile. Journal of Hospital Infection, 99, 346–355.

    Article  CAS  PubMed  Google Scholar 

  19. Uddin, M. B., Hossain, S. B., Hasan, M., Alam, M. N., et al. (2021). Multidrug antimicrobial resistance and molecular detection of MCR-1 gene in Salmonella species isolated from chicken. Animals, 11, 206.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Eitel, Z., Sóki, J., Urbán, E., & Nagy, E. (2013). ESCMID Study Group on Anaerobic Infection. The prevalence of antibiotic resistance genes in Bacteroides fragilis group strains isolated in different European countries. Anaerobe, 21, 43–49. https://doi.org/10.1016/j.anaerobe.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  21. Heuer, H., Krogerrecklenfort, E., & Wellington, E. M. H. (2002). Gentamicin resistance genes in environmental bacteria: Prevalence and transfer. FEMS Microbiology Ecology, 42, 289–302.

    Article  CAS  PubMed  Google Scholar 

  22. Heir, E., Lindstedt, B. A., Leegaard, T. M., Gjernes, E., & Kapperud, G. (2004). Prevalence and characterization of integrons in blood culture Enterobacteriaceae and gastrointestinal Escherichia coli in Norway and reporting of a novel class 1 integron-located lincosamide resistance gene. Annals of Clinical Microbiology, 3, 1–9.

    Google Scholar 

  23. El-Demerdash, A. S., Aggour, M. G., El-Azzouny, M. M., & Abou-Khadra, S. H. (2018). Molecular analysis of integron gene cassette arrays associated multi-drug resistant Enterobacteriaceae isolates from poultry. Cellular and Molecular Biology, 64, 149–156.

    Article  PubMed  Google Scholar 

  24. Schloss, P. D., Westcott, S. L., Ryabin, T., & Hall, J. R. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Shannon, P., Markiel, A., Ozier, O., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Al-Hebshi, N. N., Alharbi, F. A., Mahri, M., & Chen, T. (2021). Differences in the bacteriome of smokeless tobacco products with different oral carcinogenicity: compositional and predicted functional analysis. Genes, 8, 106.

    Article  Google Scholar 

  27. Vishwakarma, A., & Verma, D. (2023). Smokeless tobacco harbors bacteria involved in biofilm formation as well as salt and heavy metal tolerance activity. Applied Biochemistry and Biotechnology, 1–22.

  28. Ashbolt Nicholas, J., Amézquita, A., et al. (2013). Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environmental Health Perspectives, 121, 993–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Srivastav, M., Dineshkumar, T., Priyadharini, S., Niveditha, T., Sk, P., & Rajkumar, K. (2020). Smokeless tobacco products (STPs) harbour bacterial populations with potential for oral carcinogenicity. Asian Pacific Journal of Cancer Prevention, 21, 815–824.

    Article  Google Scholar 

  30. Sajid, M., Srivastava, S., Joshi, L., & Bharadwaj, M. (2021b). Impact of smokeless tobacco-associated bacteriome in oral carcinogenesis. Anaerobe, 70, 1–9.

    Article  Google Scholar 

  31. Tyx, R. E., Stanfll, S. B., Keong, L. M., et al. (2016). Characterization of bacterial communities in selected smokeless tobacco products using 16S rDNA analysis. PLoS ONE, 11, e0146939.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Han, J., Sanad, Y. M., Deck, J., Sutherland, J. B., Li, Z., et al. (2016). Bacterial populations associated with smokeless tobacco products. Applied and Environmental Microbiology, 82, 6273–6283.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Mukherjee, P. K., Wang, H., Retuerto, M., Zhang, H., & Burkey, B. (2017). Bacteriome and mycobiome associations in oral tongue cancer. Oncotarget, 8, 97273.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Di Giacomo, M., Paolino, M., Silvestro, D., et al. (2007). Microbial community structure and dynamics of dark fre-cured tobacco fermentation. Applied and Environmental Microbiology, 73, 825.

    Article  PubMed  ADS  Google Scholar 

  35. Fisher, M. T., Bennett, C. B., & Hayes, A. (2012). Sources of and technical approaches for the abatement of tobacco specific nitrosamine formation in moist smokeless tobacco products. Food and Chemical Toxicology, 50, 942–948.

    Article  CAS  PubMed  Google Scholar 

  36. Hyde, E. R., Andrade, F., Vaksman, Z., Parthasarathy, K., et al. (2014). Metagenomic analysis of nitrate reducing bacteria in the oral cavity: Implications for nitric oxide homeostasis. PLoS ONE, 9, e88645.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  37. Drenkard, E., & Ausubel, F. M. (2002). Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature, 416, 740–743.

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Sadikot, R. T., Blackwell, T. S., Christman, J. W., & Prince, A. S. (2005). Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. American Journal of Respiratory and Critical Care Medicine, 171, 1209–1223.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mayer-Hamblett, N., Rosenfeld, M., Gibson, R. L., et al. (2014). Pseudomonas aeruginosa in vitro phenotypes distinguish Cystic fibrosis infection stages and outcomes. American Journal of Respiratory and Critical Care Medicine, 190, 289–297.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Law, A. D., Fisher, C., Jack, A., & Moe, L. A. (2016). Tobacco, microbes, and carcinogens: Correlation between tobacco cure conditions, tobacco-specific nitrosamine content, and cured leaf microbial community. Microbial Ecology, 72, 120–129.

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Tyx, R. E., Rivera, A. J., Keong, L. M., & Stanfll, S. B. (2020). An exploration of smokeless tobacco product nucleic acids: A combined metagenome and meta-transcriptome analysis. Applied Microbiology and Biotechnology, 104, 751–776.

    Article  CAS  PubMed  Google Scholar 

  42. Smyth, E. M., Kulkarni, P., Claye, E., et al. (2017). Smokeless tobacco products harbor diverse bacterial microbiota that differs across products and brands. Applied Microbiology and Biotechnology, 101, 5391–5403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Srivastava, S., Sajid, M., Singh, H., & Bharadwaj, M. (2022). Delineating the bacteriome of packaged and loose smokeless tobacco products available in North India. Applied Microbiology and Biotechnology, 106, 4129–4144.

    Article  CAS  PubMed  Google Scholar 

  44. Sami, A., Elimairi, I., Patangia, D., et al. (2021). The ultra-structural, metabolomic and metagenomic characterisation of the Sudanese smokeless tobacco ‘Toombak’. Toxicology Reports, 8, 1498–1512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Samtiya, M., Matthews, K. R., Dhewa, T., & Puniya, A. K. (2022). Antimicrobial resistance in the food chain: Trends, mechanisms, pathways, and possible regulation strategies. Foods, 11, 2966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., et al. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Band Victor, I., & Weiss, D. S. (2015). Mechanisms of antimicrobial peptide resistance in gram-negative bacteria. Antibiotics, 4, 18–41. https://doi.org/10.3390/antibiotics4010018

    Article  CAS  PubMed  Google Scholar 

  48. Yang, S. J., Bayer, A. S., Mishra, N. N., et al. (2012). The Staphylococcus aureus two-component regulatory system, GraRS, senses and confers resistance to selected cationic antimicrobial peptides. Infection and Immunity, 80, 74–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Falord, M., Karimova, G., Hiron, A., & Msadek, T. (2012). GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 56, 1047–1058. https://doi.org/10.1128/AAC.05054-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Anaya-López, J. L., Lopez-Meza, J. E., & Ochoa-Zarzosa, A. (2013). Bacterial resistance to cationic antimicrobial peptides. Critical Reviews in Microbiology, 9, 180–195.

    Article  Google Scholar 

  51. Okamoto, M., Kumagai, M., Kanamori, H., & Takamatsu, D. (2021). Antimicrobial resistance genes in bacteria isolated from Japanese honey, and their potential for conferring macrolide and lincosamide resistance in the American foulbrood pathogen Paenibacillus larvae. Frontiers in Microbiology, 12, 667096. https://doi.org/10.3389/fmicb.2021.667096

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang, Y., Mao, Q., Su, Y. A., Zhang, H., Liu, H., Fu, B., Su, Z., & Wen, D. (2021). Thermophilic rather than mesophilic sludge anaerobic digesters possess lower antibiotic resistant genes abundance. Bioresource Technology, 329, 124924.

    Article  CAS  PubMed  Google Scholar 

  53. Skov, R., Christensen, J. J., Korner, B., Frimodt-Møller, N., & Espersen, F. (2001). In vitro antimicrobial susceptibility of Aerococcus urinae to 14 antibiotics, and time-kill curves for penicillin, gentamicin and vancomycin. Journal of Antimicrobial Chemotherapy, 48, 653–658.

    Article  CAS  PubMed  Google Scholar 

  54. Rasmussen, M. (2016). Aerococcus: An increasingly acknowledged human pathogen. Clinical Microbiology and Infection, 22, 22–27.

    Article  CAS  PubMed  Google Scholar 

  55. Tamang, J. P. (2014). Biochemical and modern identification techniques: Microfloras of fermented foods. In C. Batt & P. Patel (Eds.), Encyclopaedia Food Microbiology (2nd ed., pp. 250–258). Cambridge, MA, USA: Academic Press.

    Chapter  Google Scholar 

  56. Rivera, A. J., Tyx, R. E., & Keong, L. M. (2020). Microbial communities and gene contributions in smokeless tobacco products. Applied Microbiology and Biotechnology, 104, 10613–10629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eduardo, F. P., Bezinelli, L. M., Gobbi, M. F., Santos, V. M., Maluf, F. C., & Correa, L. (2019). Severe oral infection caused by Pseudomonas aeruginosa effectively treated with methylene blue-mediated photodynamic inactivation. Photodiagnosis and Photodynamic Therapy, 26, 284–286.

    Article  CAS  PubMed  Google Scholar 

  58. Sharma, V. K., Johnson, N., Cizmas, L., McDonald, T. J., & Kim, H. (2016). A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere, 150, 702–714.

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Schaenzer, A. J., & Wright, G. D. (2020). Antibiotic resistance by enzymatic modification of antibiotic targets. Trends in Molecular Medicine, 26, 768–782.

    Article  CAS  PubMed  Google Scholar 

  60. Van Hoek, A. H., Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., & Aarts, H. J. (2011). Acquired antibiotic resistance genes: An overview. Frontiers in Microbiology, 2, 203.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

AV and DV are thankful to Babasaheb Bhimrao Ambedkar University (BBAU), Lucknow, India, and Gautam Buddha Central Library, BBAU, Lucknow, India, for providing infrastructure and access to several journals and other useful online resources.

Funding

One of the authors (DV) received financial assistance from the University Grant Commission, New Delhi, India, under project no. UGC-BSR (F-30.442/2018/BSR).

Author information

Authors and Affiliations

Authors

Contributions

DV conceived the idea and designed the analysis of the present work. AV performed the NGS-based analysis and generated the analytical graphs. AV and DV wrote the manuscript. Both the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Digvijay Verma.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

On acceptance of the manuscript the copyright from the authors will be transferred to the journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 87 KB)

Supplementary file2 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwakarma, A., Verma, D. 16S rDNA-Based Amplicon Analysis Unveiled a Correlation Between the Bacterial Diversity and Antibiotic Resistance Genes of Bacteriome of Commercial Smokeless Tobacco Products. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04857-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04857-y

Keywords

Navigation