Skip to main content
Log in

Waste Sludge: Entirely Waste or a Sustainable Source of Biocrude? A Review

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biomass-derived biocrude is gaining greater recognition from people in general as an alternative fuel source to traditional fossil fuels. Worldwide, a great deal of research is being done to develop fuels made from sustainable biomass in order to replace the current conventional energy sources. Waste sludge has been thought of as a viable raw biomass source because of its accessibility, affordability, high lignin content, and higher heating value. Additionally, considering sludge contains a high proportion of moisture and water acts as a catalyst during the hydrothermal liquefaction (HTL) process, it is the best choice for thermochemical conversion. From the ultimate component value ranges obtained from elemental analysis, it can be demonstrated that the C, H, and higher heating value (HHV) of petrocrude are approximately 8.78%, 23.5%, and 10.66% higher than those of biofuel. According to the overall analysis, co-liquefaction of waste vegetable oil and swine manure can result in 87.97% bio-oil at 340 °C. The temperature, retention period, inclusion of catalysts, and use of solvents, however, can all affect this proportion. To support this illustration, it has been assessed from the study that municipal wet sewage sludge can produce an HHV of 28.52 MJ/kg when water is used as the solvent. However, 34.14 MJ/kg, or 16.5% more than the previous one, can be produced for the same amount of biomass, when the mixture of water and methanol serves as the solvents. This review article highlights an array of waste sludge categories, their chemical properties, and their conversion through the HTL process. It also features a Van Krevlen diagram with a graphical representation of essential operating parameters. This review research illustrates one of the best strategies for producing biofuel in which waste sludge can be used as raw material through the HTL conversion process, considering the prospective mass commercial production of biocrude oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data can be available upon request.

References

  1. Abnisa, F., AnuarSharuddin, S. D., bin Zanil, M. F., Wan Daud, W. M. A., & IndraMahlia, T. M. (2019). The yield prediction of synthetic fuel production from pyrolysis of plastic waste by Levenberg–Marquardt approach in feedforward neural networks model. Polymers, 11(11), 1853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmadi, S., Yuan, Z., Rohani, S., & Xu, C. C. (2016). Effects of nano-structured CoMo catalysts on hydrodeoxygenation of fast pyrolysis oil in supercritical ethanol. Catalysis Today, 269, 182–194.

    Article  CAS  Google Scholar 

  3. Arun, J., Gopinath, K. P., Vo, D. V. N., SundarRajan, P., & Swathi, M. (2020). Co-hydrothermal gasification of Scenedesmus sp. with sewage sludge for bio-hydrogen production using novel solid catalyst derived from carbon-zinc battery waste. Bioresource Technology Reports, 11, 100459.

  4. Arun, S., Manikandan, N. A., Pakshirajan, K., & Pugazhenthi, G. (2019). Novel shortcut biological nitrogen removal method using an algae-bacterial consortium in a photo-sequencing batch reactor: Process optimization and kinetic modelling. Journal of Environmental Management, 250, 109401.

    Article  CAS  PubMed  Google Scholar 

  5. Bhattacharya, T., Chakraborty, S., & Banerjee, D. K. (2010). Heavy metal uptake and its effect on macronutrients, chlorophyll, protein, and peroxidase activity of Paspalum distichum grown on sludge-dosed soils. Environmental Monitoring and Assessment, 169(1), 15–26.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, G., Wang, X., Li, J., Yan, B., Wang, Y., Wu, X., ... & Ma, W. (2019). Environmental, energy, and economic analysis of integrated treatment of municipal solid waste and sewage sludge: A case study in China. Science of the Total Environment, 647, 1433–1443.

  7. Chen, T., Zhang, Y., Wang, H., Lu, W., Zhou, Z., Zhang, Y., & Ren, L. (2014). Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresource Technology, 164, 47–54.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, W. T., Zhang, Y., Zhang, J., Schideman, L., Yu, G., Zhang, P., & Minarick, M. (2014). Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Applied Energy, 128, 209–216.

    Article  CAS  Google Scholar 

  9. Demirbas, M. F., & Balat, M. (2009). Progress and recent trends in biogas processing. International Journal of Green Energy, 6(2), 117–142.

    Article  CAS  Google Scholar 

  10. Dimitriadis, G. K., Weickert, M. O., Randeva, H. S., Kaltsas, G., & Grossman, A. (2016). Medical management of secretory syndromes related to gastroenteropancreatic neuroendocrine tumours. Endocrine-Related Cancer, 23(9), R423–R436.

    Article  PubMed  Google Scholar 

  11. Dimitriadis, A., & Bezergianni, S. (2017). Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. Renewable and Sustainable Energy Reviews, 68, 113–125.

    Article  CAS  Google Scholar 

  12. Elliott, D. C., Biller, P., Ross, A. B., Schmidt, A. J., & Jones, S. B. (2015). Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresource technology, 178, 147–156.

    Article  CAS  PubMed  Google Scholar 

  13. Ellersdorfer, M. (2020). Hydrothermal co-liquefaction of chlorella vulgaris with food processing residues, green waste and sewage sludge. Biomass and Bioenergy, 142, 105796.

    Article  CAS  Google Scholar 

  14. Fan, J., Li, Y., Yu, H., Li, Y., Yuan, Q., Xiao, H., ... & Pan, B. (2020). Using sewage sludge with high ash content for biochar production and Cu (II) sorption. Science of the Total Environment, 713, 136663.

  15. Fox, J. T., Zook, A. N., Freiss, J., Appel, B., Appel, J., Ozsuer, C., & Sarac, M. (2019). Thermal conversion of blended food production waste and municipal sewage sludge to recoverable products. Journal of Cleaner Production, 220, 57–64.

    Article  CAS  Google Scholar 

  16. Głąb, T., Żabiński, A., Sadowska, U., Gondek, K., Kopeć, M., Mierzwa-Hersztek, M., & Tabor, S. (2018). Effects of co-composted maize, sewage sludge, and biochar mixtures on hydrological and physical qualities of sandy soil. Geoderma, 315, 27–35.

    Article  Google Scholar 

  17. Goto, M., Nada, T., Kodama, A., & Hirose, T. (1999). Kinetic analysis for destruction of municipal sewage sludge and alcohol distillery wastewater by supercritical water oxidation. Industrial & Engineering Chemistry Research, 38(5), 1863–1865.

    Article  CAS  Google Scholar 

  18. Gollakota, A., & Savage, P. E. (2020). Fast and isothermal hydrothermal liquefaction of polysaccharide feedstocks. ACS Sustainable Chemistry & Engineering, 8(9), 3762–3772.

    Article  CAS  Google Scholar 

  19. Gupta, R. (2007). Advanced coal characterization: A review. Energy & Fuels, 21(2), 451–460.

    Article  CAS  Google Scholar 

  20. Hossain, S. M., Park, H., Kang, H. J., Mun, J. S., Tijing, L., Rhee, I., ... & Shon, H. K. (2021). Synthesis and NOx removal performance of anatase S–TiO2/g-CN heterojunction formed from dye wastewater sludge. Chemosphere, 275, 130020.

  21. Hossain, M. R., Khalekuzzaman, M., Kabir, S. B., Islam, M. B., & Bari, Q. H. (2022). Enhancing faecal sludge derived biocrude quality and productivity using peat biomass through co-hydrothermal liquefaction. Journal of Cleaner Production, 335, 130371.

    Article  CAS  Google Scholar 

  22. Huang, H., Yuan, X., Zeng, G., Zhu, H., Li, H., Liu, Z., ... & Bi, W. (2011). Quantitative evaluation of heavy metals’ pollution hazards in liquefaction residues of sewage sludge. Bioresource Technology, 102(22), 10346–10351.

  23. Huang, W., Huang, W., Li, H., Lei, Z., Zhang, Z., Tay, J. H., & Lee, D. J. (2015). Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge. Bioresource Technology, 193, 549–552.

    Article  CAS  PubMed  Google Scholar 

  24. Islam, M. B., Khalekuzzaman, M., Kabir, S. B., Hossain, M. R., & Alam, M. A. (2022). Substituting microalgal biomass with faecal sludge for high-quality biocrude production through co-liquefaction: A sustainable biorefinery approach. Fuel Processing Technology, 225, 107063.

    Article  CAS  Google Scholar 

  25. Jayakishan, B., Nagarajan, G., & Arun, J. (2019). Co-thermal liquefaction of Prosopis juliflora biomass with paint sludge for liquid hydrocarbons production. Bioresource Technology, 283, 303–307.

    Article  PubMed  Google Scholar 

  26. Jayaraman, R. S., Gopinath, K. P., Arun, J., Malolan, R., Adithya, S., Ajay, P. S., ... & Pugazhendhi, A. (2021). Co-hydrothermal gasification of microbial sludge and algae Kappaphycus alvarezii for bio-hydrogen production: Study on aqueous phase reforming. International Journal of Hydrogen Energy46(31), 16555–16564.

  27. Joyce, J. (1979). On the behaviour of dumped dredger spoil. Marine Pollution Bulletin, 10(6), 158–160.

    Article  Google Scholar 

  28. Kabir, S. B., & Khalekuzzaman, M. (2022). Co-liquefaction of organic solid waste with fecal sludge for producing petroleum-like biocrude for an integrated waste to energy approach. Journal of Cleaner Production, 354, 131718.

    Article  CAS  Google Scholar 

  29. Kapusta, K. (2018). Effect of ultrasound pretreatment of municipal sewage sludge on characteristics of bio-oil from hydrothermal liquefaction process. Waste Management, 78, 183–190.

    Article  CAS  PubMed  Google Scholar 

  30. Kargbo, D. M. (2010). Biodiesel production from municipal sewage sludges. Energy & Fuels, 24(5), 2791–2794.

    Article  CAS  Google Scholar 

  31. Khalekuzzaman, M., Jahan, N., Kabir, S. B., Hasan, M., Fayshal, M. A., & Chowdhury, D. R. (2023). Substituting microalgae with fecal sludge for biohythane production enhancement and cost saving through two-stage anaerobic digestion. Journal of Cleaner Production, 427, 139352.

    Article  CAS  Google Scholar 

  32. Khalekuzzaman, M., Fayshal, M. A., & Adnan, H. F. (2024). Production of low phenolic naphtha-rich biocrude through co-hydrothermal liquefaction of fecal sludge and organic solid waste using water-ethanol co-solvent. Journal of Cleaner Production, 140593.

    Article  Google Scholar 

  33. Koley, S., Khadase, M. S., Mathimani, T., Raheman, H., & Mallick, N. (2018). Catalytic and non-catalytic hydrothermal processing of Scenedesmus obliquus biomass for bio-crude production–A sustainable energy perspective. Energy Conversion and Management, 163, 111–121.

    Article  CAS  Google Scholar 

  34. Li, X., Chen, L., Mei, Q., Dong, B., Dai, X., Ding, G., & Zeng, E. Y. (2018). Microplastics in sewage sludge from the wastewater treatment plants in China. Water Research, 142, 75–85.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, C., Li, H., Zhang, Y., Si, D., & Chen, Q. (2016). Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresource Technology, 216, 87–94.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, R., Tian, W., Kong, S., Meng, Y., Wang, H., & Zhang, J. (2018). Effects of inorganic and organic acid pretreatments on the hydrothermal liquefaction of municipal secondary sludge. Energy Conversion and Management, 174, 661–667.

    Article  CAS  Google Scholar 

  37. Liu, Z., & Zhang, F. S. (2008). Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 49(12), 3498–3504.

    Article  CAS  Google Scholar 

  38. Lin, S., Liu, R., & Guo, S. (2022). High temperature microwave dielectric and thermochemical properties of waste LixMn2O4 battery cathode materials reduced by moso bamboo. Renewable Energy, 181, 714–724.

    Article  CAS  Google Scholar 

  39. Lu, J., Zhang, J., Zhu, Z., Zhang, Y., Zhao, Y., Li, R., ... & Liu, Z. (2017). Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction. Energy Conversion and Management134, 340–346.

  40. MazaheriAssadi, M., & Tabatabaee, M. S. (2010). Biosurfactants and their use in upgrading petroleum vacuum distillation residue: A review. International Journal of Environmental Research, 4(4), 549–572.

    CAS  Google Scholar 

  41. Minami, E., & Saka, S. (2005). Biomass resources present in Japan—Annual quantities grown, unused and wasted. Biomass and Bioenergy, 29(5), 310–320.

    Article  Google Scholar 

  42. Nazari, L., Yuan, Z., Santoro, D., Sarathy, S., Ho, D., Batstone, D., ... & Ray, M. B. (2017). Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation. Water Research, 113, 111–123.

  43. Parikh, A., & Madamwar, D. (2006). Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresource Technology, 97(15), 1822–1827.

    Article  CAS  PubMed  Google Scholar 

  44. Qian, L., Wang, S., Xu, D., Guo, Y., Tang, X., & Wang, L. (2016). Treatment of municipal sewage sludge in supercritical water: A review. Water Research, 89, 118–131.

    Article  CAS  PubMed  Google Scholar 

  45. Qian, L., Wang, S., & Savage, P. E. (2017). Hydrothermal liquefaction of sewage sludge under isothermal and fast conditions. Bioresource technology, 232, 27–34.

    Article  CAS  PubMed  Google Scholar 

  46. Qin, Y., He, H., Ou, X., & Bao, T. (2019). Experimental study on darkening water-rich mud tailings for accelerating desiccation. Journal of Cleaner Production, 240, 118235.

    Article  Google Scholar 

  47. Sahu, V., Attri, R., Gupta, P., & Yadav, R. (2020). Development of eco friendly brick using water treatment plant sludge and processed tea waste. Journal of Engineering, Design and Technology, 18(3), 727–738.

  48. Sawayama, S., Inoue, S., Yagishita, T., Ogi, T., & Yokoyama, S. Y. (1995). Thermochemical liquidization and anaerobic treatment of dewatered sewage sludge. Journal of Fermentation and Bioengineering, 79(3), 300–302.

    Article  CAS  Google Scholar 

  49. Seiple, T. E., Skaggs, R. L., Fillmore, L., & Coleman, A. M. (2020). Municipal wastewater sludge as a renewable, cost-effective feedstock for transportation biofuels using hydrothermal liquefaction. Journal of Environmental Management, 270, 110852.

    Article  CAS  PubMed  Google Scholar 

  50. Shu, J., Wu, H., Chen, M., Wei, L., Wang, B., Li, B., ... & Liu, Z. (2019). Simultaneous optimizing removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using chemical equilibrium model. Ecotoxicology and Environmental Safety, 172, 273–280.

  51. Singh, V., Phuleria, H. C., & Chandel, M. K. (2020). Estimation of energy recovery potential of sewage sludge in India: Waste to watt approach. Journal of Cleaner Production, 276, 122538.

    Article  Google Scholar 

  52. Strande, L., & Brdjanovic, D. (Eds.). (2014). Faecal sludge management: Systems approach for implementation and operation. IWA publishing.

  53. Su, X., Tian, Y., Li, H., & Wang, C. (2013). New insights into membrane fouling based on characterization of cake sludge and bulk sludge: An especial attention to sludge aggregation. Bioresource Technology, 128, 586–592.

    Article  CAS  PubMed  Google Scholar 

  54. Suzuki, A., Nakamura, T., Yokoyama, S. Y., Ogi, T., & Koguchi, K. (1988). Conversion of sewage sludge to heavy oil by direct thermochemical liquefaction. Journal of Chemical Engineering of Japan, 21(3), 288–293.

    Article  CAS  Google Scholar 

  55. Tyagi, V. K., & Lo, S. L. (2013). Sludge: A waste or renewable source for energy and resources recovery? Renewable and Sustainable Energy Reviews, 25, 708–728.

    Article  CAS  Google Scholar 

  56. Thangalazhy-Gopakumar, S., et al. (2011). Production of hydrocarbon fuels from biomass using catalytic pyrolysis under helium and hydrogen environments. Bioresource Technology, 102(12), 6742–6749.

    Article  CAS  PubMed  Google Scholar 

  57. Vardon, D. R., Sharma, B. K., Scott, J., Yu, G., Wang, Z., Schideman, L., ... & Strathmann, T. J. (2011). Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresource Technology, 102(17), 8295–8303.

  58. Vietti, A. J., Rabie, S. L., & Ntshabele, K. (2019). Process water conditioning to improve slurry dewatering. In Paste 2019: Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings (pp. 295–304). Australian Centre for Geomechanics.

  59. Wade, K. C. (1995). Steam generator degradation and its impact on continued operation of pressurized water reactors in the United States. Energy Information Administration/Electric Power Monthly, 66, 36.

    Google Scholar 

  60. Wang, M., Sahu, A. K., Rusten, B., & Park, C. (2013). Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge. Bioresource Technology, 142, 585–590.

    Article  CAS  PubMed  Google Scholar 

  61. Xu, C., & Lancaster, J. (2008). Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water. Water Research, 42(6–7), 1571–1582.

    Article  CAS  PubMed  Google Scholar 

  62. Xu, C. C., & Lancaster, J. (2009). Treatment of secondary sludge for energy recovery. Energy Recover. Nov. Sci. Publ. Inc., New.

  63. Xiu, S., Shahbazi, A., & Wang, L. (2016). Co-liquefaction of swine manure with waste vegetable oil for enhanced bio-oil production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(4), 459–465.

    Article  CAS  Google Scholar 

  64. Yang, S. F., & Li, X. Y. (2009). Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions. Process Biochemistry, 44(1), 91–96.

    Article  Google Scholar 

  65. Ye, J., Yin, H., Mai, B., Peng, H., Qin, H., He, B., & Zhang, N. (2010). Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresource Technology, 101(11), 3893–3902.

    Article  CAS  PubMed  Google Scholar 

  66. Yokoyama, S. Y., Suzuki, A., Murakami, M., Ogi, T., Koguchi, K., & Nakamura, E. (1987). Liquid fuel production from sewage sludge by catalytic conversion using sodium carbonate. Fuel, 66(8), 1150–1155.

    Article  CAS  Google Scholar 

  67. Zhang, T., Zhang, X. X., & Ye, L. (2011). Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS One, 6(10), e26041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu, Y., Zeng, G., Zhang, P., Zhang, C., Ren, M., Zhang, J., & Chen, M. (2013). Feasibility of bioleaching combined with Fenton-like reaction to remove heavy metals from sewage sludge. Bioresource Technology, 142, 530–534.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FTD: conceptualization, methodology, resources, data collection, software, formal analysis, writing — original draft, writing — review and editing. Md.AF: conceptualization, methodology, data collection, formal analysis, software, supervision, formal analysis, writing — original draft, writing — review and editing.

Corresponding author

Correspondence to Md. Atik Fayshal.

Ethics declarations

Ethical Approval

The study was approved by the Khulna University of Engineering & Technology, Khulna, Bangladesh.

Consent to Participate

I consent to participate in the research project and the following has been explained to me: the research may not be of direct benefit to me. My participation is completely voluntary. My right to withdraw from the study at any time without any implications to me.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Farin Tasnuva Dhara and Md. Atik Fayshal contributed equally and will be regarded as 1st co-authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhara, F.T., Fayshal, M.A. Waste Sludge: Entirely Waste or a Sustainable Source of Biocrude? A Review. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-023-04846-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04846-7

Keywords

Navigation