Skip to main content

Advertisement

Log in

In Vitro and In Silico Studies on 4-Nitroacetophenone Thiosemicarbazone Potential Cytotoxicity Against A549 Cell Lines

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lung malignancy is a major worldwide issue that occurs due to the dysregulation of various growth factors. Lung cancer has no apparent signs in the early stages, which makes it harder to catch it in time and leads to a higher fatality rate. So, the goal of this work was to create and analyze a novel chemical molecule called 4-nitro acetophenone thiosemicarbazone (4-NAPTSc) against the lung cancer cell line A549 and human non-tumorigenic lung epithelial cell line BAES-2B. The ligand was synthesized by refluxing the reaction mixture of 4-nitro acetophenone and thiosemicarbazide and was further characterized by UV, FTIR, and 1H and 13C NMR and Differential Scanning Calorimetry (DSC) study. Cytotoxicity assay/MTT (3-(4,5-dimethylthiazol-2-yl))2,5-diphenyltetrazolium bromide) was used to evaluate the cytotoxicity of the compound. Epidermal growth factor receptors (EGFR), polo-like kinase-1 (PLK1), and vascular endothelial growth factor receptors (VEGFR) were chosen as the target proteins for molecular docking to find potential ligand binding sites and inhibit their function. A novel yellow-colored crystalline solid has been synthesized. 4-NAPTSc had an IC50 of 2.93 μg/mL against the A549 lung cancer cells. When the dosage is increased from 5 to 15 μg/mL along with time, the cell viability falls. Docking results showed that the compound binds with the targeted proteins’ amino acid residues, and the likeness profile of the compound is also favorable. This study reveals that the compound has the potential for further investigation and can be used in multitargeted cancer therapies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Sharma, P. (2022). India’s cancer burden to rise to 29.8 million in 2025: ICMR report. Retrieved November 22, 2022, from Mint website: https://www.livemint.com/science/health/indias-cancer-burden-to-rise-to-29-8-million-in-2025-icmr-report-11652382169284.html

  2. Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer. https://doi.org/10.1002/ijc.33588

  3. Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. m., Piñeros, M., … Bray, F. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer, 144(8), 1941–1953. https://doi.org/10.1002/ijc.31937

  4. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., et al. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–E386. https://doi.org/10.1002/ijc.29210

    Article  PubMed  CAS  Google Scholar 

  5. Thandra, K. C., Barsouk, A., Saginala, K., Aluru, J. S., & Barsouk, A. (2021). Epidemiology of lung cancer. Contemporary Oncology, 25(1), 45–52. https://doi.org/10.5114/wo.2021.103829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chen, Y., Mathy, N. W., & Lu, H. (2018). The role of VEGF in the diagnosis and treatment of malignant pleural effusion in patients with non-small cell lung cancer (Review). Molecular Medicine Reports, 17(6), 8019–8030. https://doi.org/10.3892/mmr.2018.8922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ohsaki, Y., Tanno, S., Fujita, Y., Toyoshima, E., Fujiuchi, S., Nishigaki, Y., et al. (2000). Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncology Reports, 7(3), 603–607. https://doi.org/10.3892/or.7.3.603

    Article  PubMed  CAS  Google Scholar 

  8. Santos-Pirath, Í. M., Walter, L. O., Maioral, M. F., Pacheco, L. A., Sens, L., Nunes, R. J., & Santos-Silva, M. C. (2021). Molecular events and cytotoxic effects of a novel thiosemicarbazone derivative in human leukemia and lymphoma cell lines. Hematology/Oncology and Stem Cell Therapy, 14(1), 51–64. https://doi.org/10.1016/j.hemonc.2020.07.007

    Article  PubMed  CAS  Google Scholar 

  9. Chiappa, M., Petrella, S., Damia, G., Broggini, M., Guffanti, F., & Ricci, F. (2022). Present and future perspective on PLK1 inhibition in cancer treatment. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.903016

  10. Spänkuch-Schmitt, B., Bereiter-Hahn, J., Kaufmann, M., & Strebhardt, K. (2002). Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptosis and spindle formation in human cancer cells. Journal of the National Cancer Institute, 94(24), 1863–1877. https://doi.org/10.1093/jnci/94.24.1863

    Article  PubMed  Google Scholar 

  11. Ferrara, N., & Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endocrine Reviews, 18(1), 4–25. https://doi.org/10.1210/edrv.18.1.0287

    Article  PubMed  CAS  Google Scholar 

  12. Shibuya, M. (2011). Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes & Cancer, 2(12), 1097–1105. https://doi.org/10.1177/1947601911423031

    Article  CAS  Google Scholar 

  13. Guo, S., Colbert, L. S., McGlothen, T. Z., Gonzalez-Perez, R. R., Guo, S., Colbert, L. S., et al. (2012). Regulation of angiogenesis in human cancer via vascular endothelial growth factor receptor-2 (VEGFR-2). In Tumor Angiogenesis. IntechOpen. https://doi.org/10.5772/27370

    Chapter  Google Scholar 

  14. Padmanabhan, P., Khaleefathullah, S., Kaveri, K., Palani, G., Ramanathan, G., Thennarasu, S., & Tirichurapalli Sivagnanam, U. (2017). Antiviral activity of Thiosemicarbazones derived from α-amino acids against Dengue virus. Journal of Medical Virology, 89(3), 546–552. https://doi.org/10.1002/jmv.24655

    Article  PubMed  CAS  Google Scholar 

  15. Atasever Arslan, B., Kaya, B., Şahin, O., Baday, S., Saylan, C. C., & Ülküseven, B. (2021). The iron(III) and nickel(II) complexes with tetradentate thiosemicarbazones. Synthesis, experimental, theoretical characterization, and antiviral effect against SARS-CoV-2. Journal of Molecular Structure, 1246, 131166. https://doi.org/10.1016/j.molstruc.2021.131166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ozturk, I. I., Banti, C. N., Hadjikakou, S. K., Panagiotou, N., & Tasiopoulos, A. J. (2021). Bismuth(III) halide complexes of aromatic thiosemicarbazones: Synthesis, structural characterization and biological evaluation. Polyhedron, 208, 115388. https://doi.org/10.1016/j.poly.2021.115388

    Article  CAS  Google Scholar 

  17. Polo-Cerón, D. (2019). Cu(II) and Ni(II) complexes with new tridentate NNS thiosemicarbazones: Synthesis, characterisation, DNA interaction, and antibacterial activity. Bioinorganic Chemistry and Applications, 2019, e3520837. https://doi.org/10.1155/2019/3520837

    Article  CAS  Google Scholar 

  18. Sens, L., de Souza, A. C. A., Pacheco, L. A., Menegatti, A. C. O., Mori, M., Mascarello, A., et al. (2018). Synthetic thiosemicarbazones as a new class of Mycobacterium tuberculosis protein tyrosine phosphatase A inhibitors. Bioorganic & Medicinal Chemistry, 26(21), 5742–5750. https://doi.org/10.1016/j.bmc.2018.10.030

    Article  CAS  Google Scholar 

  19. del Águila, I., Mendiola, M. A., Pradhan, S., Sinha, C., & López-Torres, E. (2021). Synthesis, characterization, in vitro cytotoxic activity and molecular docking of dinuclear gold(I) complexes with terephthalaldehyde bis(thiosemicarbazones). Polyhedron, 210, 115498. https://doi.org/10.1016/j.poly.2021.115498

    Article  CAS  Google Scholar 

  20. Ertik, O., Danışman Kalındemirtaş, F., Kaya, B., Yanardag, R., Erdem Kuruca, S., Şahin, O., & Ülküseven, B. (2021). Oxovanadium(IV) complexes with tetradentate thiosemicarbazones. Synthesis, characterization, anticancer enzyme inhibition and in vitro cytotoxicity on breast cancer cells. Polyhedron, 202, 115192. https://doi.org/10.1016/j.poly.2021.115192

    Article  CAS  Google Scholar 

  21. Savir, S., Wei, Z. J., Liew, J. W. K., Vythilingam, I., Lim, Y. A. L., Saad, H. M., et al. (2020). Synthesis, cytotoxicity and antimalarial activities of thiosemicarbazones and their nickel (II) complexes. Journal of Molecular Structure, 1211, 128090. https://doi.org/10.1016/j.molstruc.2020.128090

    Article  CAS  Google Scholar 

  22. Singh, N. K., Kumbhar, A. A., Pokharel, Y. R., & Yadav, P. N. (2020). Anticancer potency of copper(II) complexes of thiosemicarbazones. Journal of Inorganic Biochemistry, 210, 111134. https://doi.org/10.1016/j.jinorgbio.2020.111134

    Article  PubMed  CAS  Google Scholar 

  23. Song, J., Pan, R., Li, G., Su, W., Song, X., Li, J., & Liu, S. (2020). Synthesis and anticancer activities of thiosemicarbazones derivatives of thiochromanones and related scaffolds. Medicinal Chemistry Research, 29(4), 630–642. https://doi.org/10.1007/s00044-020-02503-w

    Article  CAS  Google Scholar 

  24. Gokhale, N., Padhye, S., Newton, C., & Pritchard, R. (2000). Hydroxynaphthoquinone metal complexes as antitumor agents X: Synthesis, structure, spectroscopy and in vitro antitumor activity of 3-methyl-phenylazo Lawsone derivatives and their metal complexes against human breast cancer cell line MCF-7. Metal-Based Drugs, 7, 121–128. https://doi.org/10.1155/MBD.2000.121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 1-nitroacetophenone (CHEBI:28735). (n.d.). Retrieved January 11, 2023, from https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:28735

  26. PubChem. (n.d.). Thiosemicarbazide. Retrieved January 11, 2023, from https://pubchem.ncbi.nlm.nih.gov/compound/2723789

  27. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nisha, C. M., Kumar, A., Nair, P., Gupta, N., Silakari, C., Tripathi, T., & Kumar, A. (2016). Molecular docking and in silico ADMET Study reveals acylguanidine 7a as a potential inhibitor of β-Secretase. Advances in Bioinformatics, 2016, 9258578. https://doi.org/10.1155/2016/9258578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0

    Article  PubMed  CAS  Google Scholar 

  30. Mahanthesh, M.T., Ranjith, D., Raghavendra, Y., Jyothi, R., Narappa, G., & Ravi, M.V. (2020). Swiss ADME prediction of phytochemicals present in Butea monosperma (Lam.) Taub. J Pharmacogn Phytochem, 9(3), 1799–1809

  31. Blake, J. F. (2000). Chemoinformatics – Predicting the physicochemical properties of ‘drug-like’ molecules. Current Opinion in Biotechnology, 11(1), 104–107. https://doi.org/10.1016/S0958-1669(99)00062-2

    Article  PubMed  CAS  Google Scholar 

  32. Anjum, R., Palanimuthu, D., Kalinowski, D. S., Lewis, W., Park, K. C., Kovacevic, Z., et al. (2019). Synthesis, Characterization, and in Vitro Anticancer Activity of Copper and Zinc Bis(Thiosemicarbazone) Complexes. Inorganic Chemistry, 58(20), 13709–13723. https://doi.org/10.1021/acs.inorgchem.9b01281

    Article  PubMed  CAS  Google Scholar 

  33. Palanimuthu, D., Shinde, S. V., Somasundaram, K., & Samuelson, A. G. (2013). In vitro and in vivo anticancer activity of copper bis(thiosemicarbazone) complexes. Journal of Medicinal Chemistry, 56(3), 722–734. https://doi.org/10.1021/jm300938r

    Article  PubMed  CAS  Google Scholar 

  34. Wang, Y., Gu, W., Shan, Y., Liu, F., Xu, X., Yang, Y., et al. (2017). Design, synthesis and anticancer activity of novel nopinone-based thiosemicarbazone derivatives. Bioorganic & Medicinal Chemistry Letters, 27(11), 2360–2363. https://doi.org/10.1016/j.bmcl.2017.04.024

    Article  CAS  Google Scholar 

  35. Gou, Y., Wang, J., Chen, S., Zhang, Z., Zhang, Y., Zhang, W., & Yang, F. (2016). α−N−heterocyclic thiosemicarbazone Fe(III) complex: Characterization of its antitumor activity and identification of anticancer mechanism. European Journal of Medicinal Chemistry, 123, 354–364. https://doi.org/10.1016/j.ejmech.2016.07.041

    Article  PubMed  CAS  Google Scholar 

  36. He, Z., Qiao, H., Yang, F., Zhou, W., Gong, Y., Zhang, X., et al. (2019). Novel thiosemicarbazone derivatives containing indole fragment as potent and selective anticancer agent. European Journal of Medicinal Chemistry, 184, 111764. https://doi.org/10.1016/j.ejmech.2019.111764

    Article  PubMed  CAS  Google Scholar 

  37. Deng, J., Yu, P., Zhang, Z., Wang, J., Cai, J., Wu, N., et al. (2018). Designing anticancer copper(II) complexes by optimizing 2-pyridine-thiosemicarbazone ligands. European Journal of Medicinal Chemistry, 158, 442–452. https://doi.org/10.1016/j.ejmech.2018.09.020

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NV is PhD scholar in life sciences, and she wrote this research article under the supervision of Dr. KanuPriya. PB and SK helped in conducting the experiments and collection of data. Dr. MS, Dr. SK, Dr. NC, Dr. VD, Dr. SR, and MTA modified and prepared it for publication.

Corresponding author

Correspondence to Kanu Priya.

Ethics declarations

Ethical Approval

Not applicable

Consent to Participate

This research does not contain any studies with human participants performed by any of the authors.

Consent for Publication

Free

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, N., Singh, M., Bhati, P. et al. In Vitro and In Silico Studies on 4-Nitroacetophenone Thiosemicarbazone Potential Cytotoxicity Against A549 Cell Lines. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04814-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04814-1

Keywords

Navigation