Skip to main content
Log in

Fermentative Production of β-Carotene from Sugarcane Bagasse Hydrolysate by Rhodotorula glutinis CCT-2186

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Β-Carotene is a red–orange pigment that serves as a precursor to important pharmaceutical molecules like vitamin A and retinol, making it highly significant in the industrial sector. Consequently, there is an ongoing quest for more sustainable production methods. In this study, glucose and xylose, two primary sugars derived from sugarcane bagasse (SCB), were utilized as substrates for β-carotene production by Rhodotorula glutinis CCT-2186. To achieve this, SCB underwent pretreatment using NaOH, involved different concentrations of total solids (TS) (10%, 15%, and 20%) to remove lignin. Each sample was enzymatically hydrolyzed using two substrate loadings (5% and 10%). The pretreated SCB with 10%, 15%, and 20% TS exhibited glucose hydrolysis yields (%wt) of 93.10%, 91.88%, and 90.77%, respectively. The resulting hydrolysate was employed for β-carotene production under batch fermentation. After 72 h of fermentation, the SCB hydrolysate yielded a β-carotene concentration of 118.56 ± 3.01 mg/L. These findings showcase the robustness of R. glutinis as a biocatalyst for converting SCB into β-carotene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310–318. https://doi.org/10.1016/j.biortech.2018.04.099

    Article  CAS  PubMed  Google Scholar 

  2. Nunes, L. J., Loureiro, L. M., Sá, L. C., & Silva, H. F. (2020). Sugarcane industry waste recovery: A case study using thermochemical conversion technologies to increase sustainability. Applied Sciences, 10(18), 6481. https://doi.org/10.3390/app10186481

    Article  CAS  Google Scholar 

  3. Shahid, M. K., Batool, A., Kashif, A., Nawaz, M. H., Aslam, M., Iqbal, N., & Choi, Y. (2021). Biofuels and biorefineries: Development, application and future perspectives emphasizing the environmental and economic aspects. Journal of Environmental Management, 297, 113268. https://doi.org/10.1016/j.jenvman.2021.113268

    Article  CAS  PubMed  Google Scholar 

  4. Chandel, A. K., Albarelli, J. Q., Santos, D. T., Chundawat, S. P., Puri, M., & Meireles, M. A. A. (2019). Comparative analysis of key technologies for cellulosic ethanol production from Brazilian sugarcane bagasse at a commercial scale. Biofuels, Bioproducts and Biorefining, 13(4), 994–1014. https://doi.org/10.1002/bbb.1990

    Article  CAS  Google Scholar 

  5. Kucharska, K., Rybarczyk, P., Hołowacz, I., Łukajtis, R., Glinka, M., & Kamiński, M. (2018). Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules, 23(11), 2937. https://doi.org/10.3390/molecules23112937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Medeiros, T. D. M., Dufossé, L., Bicas, J. L. (2022). Lignocellulosic substrates as starting materials for the production of bioactive biopigments. Food Chemistry: X, 100223. https://doi.org/10.1016/j.fochx.2022.100223.

  7. Avalos, J., & Carmen Limón, M. (2015). Biological roles of fungal carotenoids. Current Genetics, 61(3), 309–324. https://doi.org/10.1007/s00294-014-0454-x

    Article  CAS  PubMed  Google Scholar 

  8. Henríquez, V., Escobar, C., Galarza, J., Gimpel, J. (2016). Carotenoids in microalgae. Carotenoids in Nature, 219–237. https://doi.org/10.1007/978-3-319-39126-7_8.

  9. Carocho, M., Barreiro, M. F., Morales, P., & Ferreira, I. C. (2014). Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety, 13(4), 377–399. https://doi.org/10.1111/1541-4337.12065

    Article  PubMed  Google Scholar 

  10. BCC Research. (2021). The global market for carotenoids. Available from: https://www.bccresearch.com/market-research/food-and-beverage/the-global-market-for-carotenoids.html. Accessed November 17, 2022.

  11. Zhao, Y., Song, B., Li, J., & Zhang, J. (2022). Rhodotorula toruloides: An ideal microbial cell factory to produce oleochemicals, carotenoids, and other products. World Journal of Microbiology and Biotechnology, 38(1), 1–19. https://doi.org/10.1007/s11274-021-03201-4

    Article  CAS  Google Scholar 

  12. Ascencio, J. J., Chandel, A. K., Philippini, R. R., & da Silva, S. S. (2020). Comparative study of cellulosic sugars production from sugarcane bagasse after dilute nitric acid, dilute sodium hydroxide and sequential nitric acid-sodium hydroxide pretreatment. Biomass Conversion and Biorefinery, 10(4), 813–822. https://doi.org/10.1007/s13399-019-00547-6

    Article  CAS  Google Scholar 

  13. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. L. A. P. (2010). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, (TP-510–42618). Golden: National Renewable Energy Laboratory (NREL) Analytical Procedure.

  14. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. (2008). Determination of extractives in biomass. Laboratory Analytical Procedure, (TP-510–42619). Golden: National Renewable Energy Laboratory (NREL) Analytical Procedure.

  15. Silva, V. F., Arruda, P. V., Felipe, M. G., Gonçalves, A. R., & Rocha, G. J. (2011). Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing. Journal of Industrial Microbiology and Biotechnology, 38(7), 809–817. https://doi.org/10.1007/s10295-010-0815-5

    Article  CAS  PubMed  Google Scholar 

  16. Mussagy, C. U., Guimarães, A. A. C., Rocha, L. V. F., Winterburn, J., Ebinuma, V. D. C. S., Pereira, J. F. B. (2021). Improvement of carotenoids production from Rhodotorula glutinis CCT-2186. Biochemical Engineering Journal, 107827. https://doi.org/10.1016/j.bej.2020.107827.

  17. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  18. Nagaraj, Y. N., Burkina, V., Okmane, L., Blomqvist, J., Rapoport, A., Sandgren, M., Pickova, J., Sampels, S., & Passoth, V. (2022). Identification, quantification and kinetic study of carotenoids and lipids in Rhodotorula toruloides CBS 14 cultivated on wheat straw hydrolysate. Fermentation, 8(7), 300. https://doi.org/10.3390/fermentation8070300

    Article  CAS  Google Scholar 

  19. Pereira, S. C., Maehara, L., Machado, C. M. M., & Farinas, C. S. (2015). 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnology for Biofuels, 8(1), 1–16. https://doi.org/10.1186/s13068-015-0224-0

    Article  CAS  Google Scholar 

  20. Philippini, R. R., Martiniano, S. E., Chandel, A. K., de Carvalho, W., & da Silva, S. S. (2019). Pretreatment of sugarcane bagasse from cane hybrids: Effects on chemical composition and 2G sugars recovery. Waste and Biomass Valorization, 10(6), 1561–1570. https://doi.org/10.1007/s12649-017-0162-0

    Article  CAS  Google Scholar 

  21. Chandel, A. K., da Silva, S. S., Carvalho, W., & Singh, O. V. (2012). Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. Journal of Chemical Technology & Biotechnology, 87(1), 11–20. https://doi.org/10.1002/jctb.2742

    Article  CAS  Google Scholar 

  22. Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresources and Bioprocessing, 4(1), 1–19. https://doi.org/10.1186/s40643-017-0137-9

    Article  CAS  Google Scholar 

  23. Maryana, R., Ma’rifatun, D., Wheni, A. I., Satriyo, K. W., & Rizal, W. A. (2014). Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia, 47, 250–254. https://doi.org/10.1016/j.egypro.2014.01.221

    Article  CAS  Google Scholar 

  24. Lu, Y., He, Q., Fan, G., Cheng, Q., & Song, G. (2021). Extraction and modification of hemicellulose from lignocellulosic biomass: A review. Green Processing and Synthesis, 10(1), 779–804. https://doi.org/10.1515/gps-2021-0065

    Article  CAS  Google Scholar 

  25. Lugani, Y., Rai, R., Prabhu, A. A., Maan, P., Hans, M., Kumar, V., Kumar, S., Chandel, A. K., Sengar, R. S. (2020). Recent advances in bioethanol production from lignocelluloses: A comprehensive review with a focus on enzyme engineering and designer biocatalysts. Biofuel Research Journal, 7(4), 1267–1295. https://doi.org/10.18331/BRJ2020.7.4.5

  26. Liu, Y. Y., Xu, J. L., Zhang, Y., Liang, C. Y., He, M. C., Yuan, Z. H., & Xie, J. (2016). Reinforced alkali-pretreatment for enhancing enzymatic hydrolysis of sugarcane bagasse. Fuel Processing Technology, 143, 1–6. https://doi.org/10.1016/j.fuproc.2015.11.004

    Article  CAS  Google Scholar 

  27. Sun, C., Ren, H., Sun, F., Hu, Y., Liu, Q., Song, G., Abdulkhani, A., & Show, P. L. (2022). Glycerol organosolv pretreatment can unlock lignocellulosic biomass for production of fermentable sugars: Present situation and challenges. Bioresource Technology, 344, 126264. https://doi.org/10.1016/j.biortech.2021.126264

    Article  CAS  PubMed  Google Scholar 

  28. Pinheiro, M. J., Bonturi, N., Belouah, I., Miranda, E. A., & Lahtvee, P. J. (2020). Xylose metabolism and the effect of oxidative stress on lipid and carotenoid production in Rhodotorula toruloides: Insights for future biorefinery. Frontiers in Bioengineering and Biotechnology, 8, 1008. https://doi.org/10.3389/fbioe.2020.01008

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hernández-Almanza, A., Montanez, J. C., Aguilar-Gonzalez, M. A., Martínez-Ávila, C., Rodríguez-Herrera, R., & Aguilar, C. N. (2014). Rhodotorula glutinis as source of pigments and metabolites for food industry. Food Bioscience, 5, 64–72. https://doi.org/10.1016/j.fbio.2013.11.007

    Article  CAS  Google Scholar 

  30. Tkáčová, J., Klempová, T., & Čertík, M. (2018). Kinetic study of growth, lipid and carotenoid formation in β-carotene producing Rhodotorula glutinis. Chemical Papers, 72(5), 1193–1203. https://doi.org/10.1007/s11696-017-0368-4

    Article  CAS  Google Scholar 

  31. Salar, R. K., Certik, M., Brezova, V., Brlejova, M., Hanusova, V., & Breierová, E. (2013). Stress influenced increase in phenolic content and radical scavenging capacity of Rhodotorula glutinis CCY 20–2–26. 3 Biotech, 3(1), 53–60. https://doi.org/10.1007/s13205-012-0069-1

    Article  PubMed  Google Scholar 

  32. Verma, G., Anand, P., Pandey, S., Nagar, S., Dwivedi, V. (2019). Optimization of cultivation conditions for microbial lipid production by Rhodotorula glutinis, an oleaginous yeast. Bioscience Biotechnology Research Communications, 12(3), 790–797. https://doi.org/10.21786/bbrc/12.3/36

  33. Maldonade, I. R., Rodriguez-Amaya, D. B., & Scamparini, A. R. (2012). Statistical optimisation of cell growth and carotenoid production by Rhodotorula mucilaginosa. Brazilian Journal of Microbiology, 43, 109–115. https://doi.org/10.1590/S1517-83822012000100012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yen, H. W., Palanisamy, G., & Su, G. C. (2019). The influences of supplemental vegetable oils on the growth and β-carotene accumulation of oleaginous yeast-Rhodotorula glutinis. Biotechnology and Bioprocess Engineering, 24(3), 522–528. https://doi.org/10.1007/s12257-019-0027-4

    Article  CAS  Google Scholar 

  35. Liu, Z., Feist, A. M., Dragone, G., & Mussatto, S. I. (2020). Lipid and carotenoid production from wheat straw hydrolysates by different oleaginous yeasts. Journal of Cleaner Production, 249, 119308. https://doi.org/10.1016/j.jclepro.2019.119308

    Article  CAS  Google Scholar 

  36. Qi, F., Shen, P., Hu, R., Xue, T., Jiang, X., Qin, L., Chen, Y., & Huang, J. (2020). Carotenoids and lipid production from Rhodosporidium toruloides cultured in tea waste hydrolysate. Biotechnology for Biofuels, 13(1), 1–12. https://doi.org/10.1186/s13068-020-01712-0

    Article  CAS  Google Scholar 

  37. Deeba, F., Kumar, K. K., Wani, S. A., Singh, A. K., Sharma, J., & Gaur, N. A. (2022). Enhanced biodiesel and β-carotene production in Rhodotorula pacifica INDKK using sugarcane bagasse and molasses by an integrated biorefinery framework. Bioresource Technology, 351, 127067. https://doi.org/10.1016/j.biortech.2022.127067

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-Brazil for scientific productivity program (Process number: 309214/2021–1) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)-Brazil (Process number: 88887.514236/2020–00).

Author information

Authors and Affiliations

Authors

Contributions

Erick Díaz-Ruiz completed the experiments, collected the data and contributed in manuscript writing; Thércia R. Balbino contributed in planning of the study and helped in analysis of the fermentation samples for caretenoids; Júlio C. dos Santos helped in constructive discussion on experiments and data analysis; Vinod Kumar contributed in manuscript writing and constructive discussion; Silvio S. da Silva provided some infrastructure for performance of experiments and helped in manuscript editing; Anuj K. Chandel planned and supervised the study, and provided basic infrastructure, data analysis, checked the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anuj K. Chandel.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Ruiz, E., Balbino, T.R., dos Santos, J.C. et al. Fermentative Production of β-Carotene from Sugarcane Bagasse Hydrolysate by Rhodotorula glutinis CCT-2186. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04761-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04761-x

Keywords

Navigation