Skip to main content
Log in

Primer Exchange Reaction (PER)–Based Construction of Scaffold for Low-Speed Centrifugation–Based Isolation and Quantitative Analysis of P. aeruginosa and its application in analyzing uterine secretions with intrauterine adhesion

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Efficient isolation and sensitive quantification of Pseudomonas aeruginosa (P. aeruginosa) are crucial for identifying intrauterine infections and preventing the occurrence of intrauterine adhesion (IUA). However, traditional approaches, such as culture-based approach, are time-consuming. Herein, we constructed a detection scaffold by using primer exchange reaction (PER) that integrated the low-speed centrifugation–based isolation and sensitive quantification of target pathogenic bacteria. The established approach possesses several advantages, including (i) the approach is capable of simultaneous isolation and sensitive quantification of target bacteria; (ii) low-speed centrifugation or even manual equipment could be used to isolate target bacteria; and (iii) a low limit of detection was obtained as 54 cfu/mL. Based on this, the approach is a promising approach in analyzing P. aeruginosa from uterine secretions with IUA.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this article.

References

  1. Marei, E. M. (2020). Isolation and Characterization of Pseudomonas aeruginosa and its Virulent Bacteriophages. Pakistan Journal of Biological Sciences, 23, 491–500.

    Article  CAS  PubMed  Google Scholar 

  2. Sharma, G., Rao, S., Bansal, A., Dang, S., Gupta, S., & Gabrani, R. (2014). Pseudomonas aeruginosa biofilm: Potential therapeutic targets. Biologicals, 42, 1–7.

    Article  CAS  PubMed  Google Scholar 

  3. Skariyachan, S., Sridhar, V. S., Packirisamy, S., Kumargowda, S. T., & Challapilli, S. B. (2018). Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiologia (Praha), 63, 413–432.

    Article  CAS  Google Scholar 

  4. Shao, X., Xie, Y., Zhang, Y., Liu, J., Ding, Y., Wu, M., Wang, X., & Deng, X. (2020). Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expert Opinion on Drug Discovery, 15, 1403–1423.

    Article  CAS  PubMed  Google Scholar 

  5. Hoiby, N., Frederiksen, B., & Pressler, T. (2005). Eradication of early Pseudomonas aeruginosa infection. Journal of Cystic Fibrosis, 4(Suppl 2), 49–54.

    Article  CAS  PubMed  Google Scholar 

  6. Dolan, S. K. (2020). Current knowledge and future directions in developing strategies to combat Pseudomonas aeruginosa infection. Journal of Molecular Biology, 432, 5509–5528.

    Article  CAS  PubMed  Google Scholar 

  7. Thoming, J. G., & Haussler, S. (2022). Transcriptional profiling of Pseudomonas aeruginosa infections. Advances in Experimental Medicine and Biology, 1386, 303–323.

    Article  PubMed  Google Scholar 

  8. Locke, A., Fitzgerald, S., & Mahadevan-Jansen, A. (2020). Advances in optical detection of human-associated pathogenic bacteria. Molecules, 25.

  9. Rajapaksha, P., Elbourne, A., Gangadoo, S., Brown, R., Cozzolino, D., & Chapman, J. (2019). A review of methods for the detection of pathogenic microorganisms. Analyst, 144, 396–411.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, Y., Zhou, H., Hu, Z., Yu, G., Yang, D., & Zhao, J. (2017). Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosensors & Bioelectronics, 94, 131–140.

    Article  CAS  Google Scholar 

  11. Lagier, J. C., Edouard, S., Pagnier, I., Mediannikov, O., Drancourt, M., & Raoult, D. (2015). Current and past strategies for bacterial culture in clinical microbiology. Clinical Microbiology Reviews, 28, 208–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, P., Sun, H., Yang, W., & Fang, Y. (2022). Optical methods for label-free detection of bacteria. Biosensors (Basel), 12.

  13. Huang, Y., Chen, W., Chung, J., Yin, J., & Yoon, J. (2021). Recent progress in fluorescent probes for bacteria. Chemical Society Reviews, 50, 7725–7744.

    Article  CAS  PubMed  Google Scholar 

  14. Du, R., Yang, D., & Yin, X. (2022). Rapid detection of three common bacteria based on fluorescence spectroscopy. Sensors (Basel), 22.

  15. Mouffouk, F., da Costa, A. M., Martins, J., Zourob, M., Abu-Salah, K. M., & Alrokayan, S. A. (2011). Development of a highly sensitive bacteria detection assay using fluorescent pH-responsive polymeric micelles. Biosensors & Bioelectronics, 26, 3517–3523.

    Article  CAS  Google Scholar 

  16. McEachern, F., Harvey, E., & Merle, G. (2020). Emerging technologies for the electrochemical detection of bacteria. Biotechnology Journal, 15, e2000140.

    Article  PubMed  Google Scholar 

  17. Kuss, S., Amin, H. M. A., & Compton, R. G. (2018). Electrochemical detection of pathogenic bacteria-recent strategies, advances and challenges. Chemistry, an Asian Journal, 13, 2758–2769.

    Article  CAS  PubMed  Google Scholar 

  18. Qin, W., Zheng, B., Yuan, Y., Li, M., Bai, Y., Chang, J., Wang, H., & Wang, Y. (2016). Sensitive detection of Porphyromonas gingivalis based on magnetic capture and upconversion fluorescent identification with multifunctional nanospheres. European Journal of Oral Sciences, 124, 334–342.

    Article  CAS  PubMed  Google Scholar 

  19. Hu, J., Jiang, Y. Z., Tang, M., Wu, L. L., Xie, H. Y., Zhang, Z. L., & Pang, D. W. (2019). Colorimetric-fluorescent-magnetic nanosphere-based multimodal assay platform for salmonella detection. Analytical Chemistry, 91, 1178–1184.

    Article  CAS  PubMed  Google Scholar 

  20. Das, R., Dhiman, A., Kapil, A., Bansal, V., & Sharma, T. K. (2019). Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Analytical and Bioanalytical Chemistry, 411, 1229–1238.

    Article  CAS  PubMed  Google Scholar 

  21. Shi, X., Zhang, J., & He, F. (2019). A new aptamer/polyadenylated DNA interdigitated gold electrode piezoelectric sensor for rapid detection of Pseudomonas aeruginosa. Biosensors & Bioelectronics, 132, 224–229.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial and technical support from Women and Children’s Hospital of Chongqing Medical University.

Funding

This research was supported by the National Natural Science Foundation of Chongqing, China (reference: cstc2020jcyj-msxmX0403, cstc2021jcyj-msxmX0846 and CSTB2023NSCQ-MSX0283) and Chongqing Health Appropriate Technology Promotion Project (reference: 2022jstg014).

Author information

Authors and Affiliations

Authors

Contributions

QF and YC financed the research; BY, QF, and YC designed and wrote the manuscript; BY performed experiments; YW and XY assisted data analysis.

Corresponding authors

Correspondence to Qian Fen or Yugang Chi.

Ethics declarations

Ethical Approval

Permission from the Institutional Animal Ethical Committee was received before making these experiments.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 35 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Wang, Y., Yan, X. et al. Primer Exchange Reaction (PER)–Based Construction of Scaffold for Low-Speed Centrifugation–Based Isolation and Quantitative Analysis of P. aeruginosa and its application in analyzing uterine secretions with intrauterine adhesion. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04742-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04742-0

Keywords

Navigation