Skip to main content
Log in

Deoxynivalenol Detoxification by a Novel Strain of Pichia kudriavzevii via Enzymatic Degradation and Cell Wall Adsorption

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Deoxynivalenol (DON) is a mycotoxin that significantly threatens the food and feed industry. Corn steep liquor (CSL) is an acidic byproduct of the corn starch industry, and DON is concentrated in CSL once the material is contaminated. In this work, a Pichia kudriavzevii strain that could remove DON from CSL was isolated and characterized. The strain P. kudriavzevii E4-205 showed detoxifying activity in a pH range of 4.0~7.0 and temperature of 25~42 °C, and 39.4% DON was reduced by incubating this strain in CSL supernatant diluted by 2-fold (5 μg/mL DON) for 48 h at pH 5.0 and 30 °C. Further mechanism studies showed that P. kudriavzevii E4-205 could adsorb DON by the cell wall and degrade DON by intracellular enzymes with NADH as a cofactor. The degradation product was identified as 3,7,8,15-tetrahydroxyscirpene by liquid chromatography-tandem mass spectrometry. DON adsorption by inactivated cells was characterized, and the adsorption followed pseudo first-order kinetics. This study revealed a novel mechanism by which microbes degrade DON and might serve as a guide for the development of DON biological detoxification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. de Souza, A. F., Borsato, D., Lofrano, A. D., de Oliyeira, A. S., Ono, M. A., Bordini, J. G., Hirozawa, M. T., Yabe, M. J. S., & Ono, E. Y. S. (2015). In vitro removal of deoxynivalenol by a mixture of organic and inorganic adsorbents. World Mycotoxin Journal, 8, 113–119.

    Article  Google Scholar 

  2. Yi, Y., Fan, K., Wang, J., Fu, Q., Zhou, X., Zhang, Y., & Zhang, H. (2021). Primary research on sampling scheme for analyzing mycotoxin distribution in wheat and rice fields. Journal of the Science of Food and Agriculture, 101, 4980–4986.

    Article  CAS  PubMed  Google Scholar 

  3. Wall-Martinez, H. A., Pascari, X., Bigorda, A., Ramos, A. J., Marin, S., & Sanchis, V. (2019). The fate of Fusarium mycotoxins (deoxynivalenol and zearalenone) through wort fermenting by Saccharomyces yeasts (S. cerevisiae and S. pastorianus). Food Research International, 126, 108587.

    Article  CAS  PubMed  Google Scholar 

  4. Hassan, Y. I., & Zhou, T. (2018). Promising detoxification strategies to mitigate mycotoxins in food and feed. Toxins, 10, 116.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mishra, S., Srivastava, S., Dewangan, J., Divakar, A., & Rath, S. K. (2020). Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: A survey. Critical Reviews in Food Science and Nutrition, 60, 1346–1374.

    Article  CAS  PubMed  Google Scholar 

  6. Park, J., Kim, D. H., Moon, J. Y., An, J. A., Kim, Y. W., Chung, S. H., & Lee, C. (2018). Distribution analysis of twelve mycotoxins in corn and corn-derived products by LC-MS/MS to evaluate the carry-over ratio during wet-milling. Toxins, 10, 319.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chlebicz, A., & Slizewska, K. (2020). In vitro detoxification of aflatoxin B-1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast. Probiotics and Antimicrobial Proteins, 12, 289–301.

    Article  CAS  PubMed  Google Scholar 

  8. Feizollahi, E., & Roopesh, M. S. (2021). Mechanisms of deoxynivalenol (DON) degradation during different treatments: A review. Critical Reviews in Food Science and Nutrition, 14, 1–22.

    Google Scholar 

  9. Davoudi, M. H., Shahidi, F., Tabatabaei, Y. F., Sarabi, J. M., & Eshaghi, Z. (2019). Biological detoxification of Monascus purpureus pigments by heat-treated Saccharomyces cerevisiae. Journal of the Science of Food and Agriculture, 99, 4439–4444.

    Article  Google Scholar 

  10. Jia, R., Cao, L. R., Liu, W. B., & Shen, Z. Y. (2021). Detoxification of deoxynivalenol by Bacillus subtilis ASAG 216 and characterization the degradation process. European Food Research and Technology, 247, 67–76.

    Article  CAS  Google Scholar 

  11. Wang, G., Wang, Y. X., Ji, F., Xu, L. M., Yu, M. Z., Shi, J. R., & Xu, J. H. (2019). Biodegradation of deoxynivalenol and its derivatives by Devosia insulae A16. Food Chemistry, 276, 436–442.

    Article  CAS  PubMed  Google Scholar 

  12. Pfliegler, W. P., Pusztahelyi, T., & Pocsi, I. (2015). Mycotoxins - Prevention and decontamination by yeasts. Journal of Basic Microbiology, 55, 805–818.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, C., Yu, X., Xu, H., Cui, G., & Chen, L. (2021). Action of Bacillus natto 16 on deoxynivalenol (DON) from wheat flour. Journal of Applied Microbiology, 131, 2317–2324.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, S. W., Hou, Q. Q., Guo, Q. Q., Zhang, J., Sun, Y. M., Wei, H., & Shen, L. X. (2020). Isolation and characterization of a deoxynivalenol-degrading bacterium Bacillus licheniformis YB9 with the capability of modulating intestinal microbial flora of mice. Toxins, 12, 184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ikunaga, Y., Sato, I., Grond, S., Numaziri, N., Yoshida, S., Yamaya, H., Hiradate, S., Hasegawa, M., Toshima, H., Koitabashi, M., Ito, M., Karlovsky, P., & Tsushima, S. (2011). Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol. Applied Microbiology and Biotechnology, 89, 419–427.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, J., Qin, X. J., Guo, Y. P., Zhang, Q. Q., Ma, Q. G., Ji, C., & Zhao, L. H. (2020). Enzymatic degradation of deoxynivalenol by a novel bacterium, Pelagibacterium halotolerans ANSP101. Food and Chemical Toxicology, 140, 111276.

    Article  CAS  PubMed  Google Scholar 

  17. Nathanail, A. V., Gibson, B., Han, L., Peltonen, K., Ollilainen, V., Jestoi, M., & Laitila, A. (2016). The lager yeast Saccharomyces pastorianus removes and transforms Fusarium trichothecene mycotoxins during fermentation of brewer's wort. Food Chemistry, 203, 448–455.

    Article  CAS  PubMed  Google Scholar 

  18. Azizi, S. A., Sharifi, A., Mirmohammadi, D., Baluch, G. H., & Rezaei, J. (2016). Effects of feeding different levels of corn steep liquor on the performance of fattening lambs. Journal of Animal Physiology and Animal Nutrition, 100, 109–117.

    Article  Google Scholar 

  19. Liu, P., Zhao, J. B., Guo, P. T., Lu, W. Q., Geng, Z. Y., Levesque, C. L., Johnston, L. J., Wang, C. L., Liu, L., Zhang, J., Ma, N., Qiao, S. Y., & Ma, X. (2017). Dietary corn bran fermented by Bacillus subtilis MA139 decreased gut cellulolytic bacteria and microbiota diversity in finishing pigs. Frontiers in Cellular and Infection Microbiology, 7, 526.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Iqbal, S. Z., Razis, A. F. A., Usman, S., Ali, N. B., & Asi, M. R. (2021). Variation of deoxynivalenol levels in corn and its products available in retail markets of Punjab, Pakistan, and estimation of risk assessment. Toxins, 13, 296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, J., Liu, J., Shi, F., Ma, C., Li, T., Chen, C., Wasim, M., Zhu, K., Sun, H., & Tian, Z. (2022). A facile pore size controlling strategy to construct rigid/flexible silica aerogels for super heat insulation and VOCs adsorption. Chemical Engineering Journal, 450, 138196.

    Article  CAS  Google Scholar 

  22. Campagnollo, F. B., Franco, L. T., Rottinghaus, G. E., Kobashigawa, E., Ledoux, D. R., Dakovic, A., & Oliveira, C. A. F. (2015). In vitro evaluation of the ability of beer fermentation residue containing Saccharomyces cerevisiae to bind mycotoxins. Food Research International, 77, 643–648.

    Article  CAS  Google Scholar 

  23. Lazo-Velez, M. A., Serna-Saldivar, S. O., Rosales-Medina, M. F., Tinoco-Alvear, M., & Briones-Garcia, M. (2018). Application of Saccharomyces cerevisiae var. boulardii in food processing: A review. Journal of Applied Microbiology, 125, 943–951.

    Article  CAS  PubMed  Google Scholar 

  24. Bruinenberg, P. G., & Castex, M. (2021). Evaluation of a yeast hydrolysate from a novel strain of Saccharomyces cerevisiae for mycotoxin mitigation using in vitro and in vivo models. Toxins, 14.

  25. Papp, L. A., Horváth, E., Peles, F., Pócsi, I., & Miklós, I. (2021). Insight into yeast–mycotoxin relations. Agriculture, 11, 129.

    Article  Google Scholar 

  26. Qu, R., Jiang, C., Wu, W., Pang, B., Lei, S., Lian, Z., Shao, D., Jin, M., & Shi, J. (2019). Conversion of DON to 3-epi-DON in vitro and toxicity reduction of DON in vivo by Lactobacillus rhamnosus. Food & Function, 10, 2785–2796.

    Article  CAS  Google Scholar 

  27. Sato, I., Ito, M., Ishizaka, M., Ikunaga, Y., Sato, Y., Yoshida, S., Koitabashi, M., & Tsushima, S. (2012). Thirteen novel deoxynivalenol-degrading bacteria are classified within two genera with distinct degradation mechanisms. FEMS Microbiology Letters, 327, 110–117.

    Article  CAS  PubMed  Google Scholar 

  28. Fruhmann, P., Hametner, C., Mikula, H., Adam, G., Krska, R., & Frohlich, J. (2014). Stereoselective Luche reduction of deoxynivalenol and three of its acetylated derivatives at C8. Toxins (Basel), 6, 325–336.

    Article  CAS  PubMed  Google Scholar 

  29. Binder, E. M., Streit, E., Brader, G., Bernard, C., Weber, B., Martinez Montero, L., Schrittwieaer, J., Kroutil, W., Pastar, M., Sessitsch, A. & Dolinsek, J. (2022). Means and methods to detoxify mycotoxins. International application number: PCT/EP2021/076900. International filing date: 30 September 2021. International publication date: 07 April 2022. International publication number: WO 2022/069610 A1

  30. Guerre, P. (2016). Worldwide mycotoxins exposure in pig and poultry feed formulations. Toxins (Basel), 8, 26–50.

    Article  Google Scholar 

  31. Jouany, J.-P., Yiannikouris, A., & Bertin, G. (2005). The chemical bonds between mycotoxins and cell wall components of Saccharomyces cerevisiae have been identified. Archiva Zootechnica, 8, 26–50.

    Google Scholar 

  32. Adami Ghamsari, F., Tajabadi Ebrahimi, M., Bagheri Varzaneh, M., Iranbakhsh, A., & Akhavan Sepahi, A. (2021). In vitro reduction of mycotoxin deoxynivalenol by organic adsorbent. Journal of Food Processing and Preservation, 45, e15212.

    Article  CAS  Google Scholar 

  33. Bzducha-Wróbel, A., Bryła, M., Gientka, I., Błazejak, S., & Janowicz, M. (2019). Candida utilis ATCC 9950 cell walls and β(1,3)/(1,6)-glucan preparations produced using agro-waste as a mycotoxins trap. Toxins, 11, 192.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kihal, A., Rodriguez-Prado, M., & Sergio, S. (2022). The efficacy of mycotoxin binders to control mycotoxins in feeds and the potential risk of interactions with nutrient: A review. Journal of Animal Science, 100, 1–14.

  35. Yiannikouris, A., André, G., Poughon, L., François, J., Dussap, C. G., Jeminet, G., Bertin, G., & Jouany, J. P. (2006). Chemical and conformational study of the interactions involved in mycotoxin complexation with β-D-glucans. Biomacromolecules, 7, 1147–1155.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Jilin COFCO Biochemistry Co., Ltd. for providing materials for this work.

Funding

This research was funded by National Key Research and Development Program of China (No. 2021YFD2101000/2021YFD2101002, and 2019YFE0197300) and Open Fund of Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education (No. KF2022010), China.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Jiaqi Xiao, Jianying Dai, and Zhilong Xiu. The first draft of the manuscript was written by Jiaqi Xiao and Jianying Dai. Methodology was provided by Jian Tan and Ruyi Guo. Supervision was performed by Jianying Dai, Zhilong Xiu, and Chunshan Quan. Funding acquisition was supported by Zhilong Xiu, Yaqin Sun, Yi Li, and Yi Tong. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianying Dai or Yi Tong.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Tan, J., Guo, R. et al. Deoxynivalenol Detoxification by a Novel Strain of Pichia kudriavzevii via Enzymatic Degradation and Cell Wall Adsorption. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04712-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04712-6

Keywords

Navigation