Skip to main content

Advertisement

Log in

Gramine Exerts Cytoprotective Effects and Antioxidant Properties Against H2O2-Induced Oxidative Stress in HEK 293 Cells

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Oxidative stress caused due to the perturbations in the oxidant-antioxidant system can damage molecules and cause cellular alteration leading to the pathogenesis of multiple diseases. This study was designed and performed to investigate the antioxidant and anti-inflammatory effects of an alkaloid, gramine on H2O2-induced oxidative stress on HEK 293 cells. Cell viability and morphometric analysis of cells treated with H2O2 and gramine were studied. Oxidative stress and inflammatory and antioxidant enzymes such as ROS, LPO, NO, SOD, GSH, and CAT were analyzed. Furthermore, mRNA expression of SOD, CAT, and COX-2 was also evaluated. H2O2 at concentration > 0.3 mM and gramine at concentration > 80 μg/mL affect the proliferation. Viability and morphometric analysis showed that gramine has protective effects. Treating cells with gramine suppressed oxidative stress and inflammatory enzymes, whereas antioxidant enzymes were enhanced. SOD and CAT mRNA levels were overexpressed and COX-2 mRNA levels were decreased in the treated groups. Gramine possesses effective antioxidant potential and can regulate oxidative stress and damages associated with it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be available on reasonable request.

Abbreviations

ROS :

reactive oxygen species

TBARS :

thiobarbituric acid reactive substances

SOD :

superoxide dismutase

CAT :

catalase

GSH :

glutathione

DMSO :

dimethyl sulfoxide

DTNB :

5,5′-dithiobis-(2-nitrobenzoic acid)

KCL :

potassium chloride

SDS :

sodium dodecyl sulfate

NBT :

nitro blue tetrazolium

NED :

N-(1-naphthyl)-ethylenediamine dihydrochloride

RT-PCR :

real time-polymerase chain reaction

References

  1. Gille, J. J., & Joenje, H. (1992). Cell culture models for oxidative stress: Superoxide and hydrogen peroxide versus normobaric hyperoxia. Mutation Research, 275(3-6), 405–414. https://doi.org/10.1016/0921-8734(92)90043-o

    Article  CAS  PubMed  Google Scholar 

  2. Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Sciences, 4(2), 89–96.

    CAS  Google Scholar 

  3. Griendling, K. K., & FitzGerald, G. A. (2003). Oxidative stress and cardiovascular injury: Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation, 108(16), 1912–1916.

    Article  PubMed  Google Scholar 

  4. Ma, Q. (2010). Transcriptional responses to oxidative stress: Pathological and toxicological implications. Pharmacology & Therapeutics, 125, 376–393.

    Article  CAS  Google Scholar 

  5. Ma, Q. (2013). Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology, 53, 401–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), 453–462.

    Article  Google Scholar 

  7. Ray, S. K., Fidan, M., Nowak, M. W., Wilford, G. G., Hogan, E. L., & Banik, N. L. (2000). Oxidative stress and Ca2+ influx upregulate calpain and induce apoptosis in PC12 cells. Brain Research, 852(2), 326–334.

    Article  CAS  PubMed  Google Scholar 

  8. Droge, W. (2001). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.

    Article  Google Scholar 

  9. Coyle, C. H., & Kader, K. N. (2007). Mechanisms of H2O2-induced oxidative stress in endothelial cells exposed to physiologic shear stress. ASAIO Journal, 53(1), 17–22.

    Article  CAS  PubMed  Google Scholar 

  10. Ransy, C., Vaz, C., Lombès, A., & Bouillaud, F. (2020). Use of H2O2 to cause oxidative stress, the catalase issue. International Journal of Molecular Sciences, 21(23), 9149. https://doi.org/10.3390/ijms21239149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kapoor, D., Sharma, R., Handa, N., Kaur, H., Rattan, A., Yadav, P., et al. (2015). Redox homeostasis in plants under abiotic stress: Role of electron carriers, energy metabolism mediators and proteinaceous thiols. Frontiers in Environmental Science, 3, 13. https://doi.org/10.3389/fenvs.2015.00013

    Article  Google Scholar 

  12. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33, 453–467.

    Article  CAS  Google Scholar 

  13. Serban, A., Stanca, L., Geicu, O., & Dinischiotu, A. (2015). AGEsinduced IL-6 synthesis precedes RAGE up-regulation in HEK 293 cells: An alternative inflammatory mechanism. International Journal of Molecular Sciences, 16(9), 20100–20117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hani, S. B., & Bayachou, M. (2014). Salvia fruticosa reduces intrinsic cellular and H2O2-induced DNA oxidation in HEK 293 cells; assessment using flow cytometry. Asian Pacific Journal of Tropical Biomedicine, 4(5), 399–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, Y. J., Gan, R. Y., Li, S., Zhou, Y., Li, A. N., Xu, D. P., & Li, H. B. (2015). Review antioxidant phytochemical for the prevention and treatment of chronic disease. Molecules, 20, 21138–21156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hannan, M. A., Sohag, A. A. M., Dash, R., Haque, M. N., Mohibbullah, M., Oktaviani, D. F., & Moon, I. S. (2020). Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine, 69, 153201.

    Article  CAS  PubMed  Google Scholar 

  17. Matsuo, H., Taniguchi, K., Hiramoto, T., et al. (2001). Gramine increase associated with rapid and transient systemic resistance in barley seedlings induced by mechanical and biological stresses. Plant & Cell Physiology, 42(10), 1103–1111.

    Article  CAS  Google Scholar 

  18. Iwata, S., Saito, S., Kon-ya, K., Shizuri, Y., & Ohizumi, Y. (2001). Novel marinederived halogen-containing gramine analogues induce vasorelaxation in isolated rat aorta. European Journal of Pharmacology, 432(1), 63–70.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar, R. A., & Suresh, K. (2014). Chemopreventive potential of gramine against 7, 12-dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis. International Journal of Modern Research and Reviews, 2, 188–194.

    Google Scholar 

  20. Iwata, S., Saito, S., Kon-ya, K., Shizuri, Y., & Ohizumi, Y. (2001). Novel marine-derived halogen-containing gramine analogues induce vasorelaxation in isolated rat aorta. European Journal of Pharmacology, 432, 63–70.

    Article  CAS  PubMed  Google Scholar 

  21. Hong, Y., Hu, H. Y., Xie, X., Sakoda, A., Sagehashi, M., & Li, F. M. (2009). Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquatic Toxicology, 91, 262–269.

    Article  CAS  PubMed  Google Scholar 

  22. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2). https://doi.org/10.1016/0022-1759(83)90303-4

  23.  Li Y, Li Y, Fang Z, Huang D, Yang Y, Zhao D, et al. (2020). The effect of Malus doumeri leaf flavonoids on oxidative stress injury induced by hydrogen peroxide (H2O2) in human embryonic kidney 293 T cells. BMC Complementary Medicine and Therapies, 20(1). https://doi.org/10.1186/s12906-020-03072-6

  24. Strober W. (2015). Trypan blue exclusion test of cell viability. Current Protocols in Immunology, 111(1). https://doi.org/10.1002/0471142735.ima03bs111

  25. Choi, H. S., Kim, J. W., Cha, Y. N., Kim, C. (2006). A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. Journal of Immunoassay and Immunochemistry, 27(1), 31–44.

  26. Ohkawa, H., Ohishi, N., Yagi K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2). https://doi.org/10.1016/0003-2697(79)90738-3

  27. Dirsch, V. M., Stuppner, H., Vollmar, A. M. (1998). The griess assay: Suitable for a bio-guided fractionation of anti- inflammatory plant extracts? Planta Medica, 64(5). https://doi.org/10.1055/s-2006-957473

  28. Luo, S., Jiang, X., Jia, L., Tan, C., Li, M., Yang, Q. et al. (2019). In vivo and in vitro antioxidant activities of methanol extracts from olive leaves on caenorhabditis elegans. Molecules, 24(4). https://doi.org/10.3390/molecules24040704

  29. Pippenger, C. E., Browne, R. W., Armstrong, D. (1998) Regulatory antioxidant enzymes. Methods in Molecular Biology,  108. https://doi.org/10.1385/0-89603-472-0:299

  30. Góth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196(2–3). https://doi.org/10.1016/0009-8981(91)90067-M

  31. Sedeek, M., Nasrallah, R., Touyz, R. M., Hébert, R. L. (2013). NADPH oxidases, reactive oxygen species, and the kidney: Friend and foe. Journal of the American Society of Nephrology, 24(10). https://doi.org/10.1681/ASN.2012111112

  32. Stillwell. W. (2016). Membrane transport. In: An Introduction to Biological Membranes. https://doi.org/10.1016/b978-0-444-63772-7.00019-1

  33. Chen, Y., McMillan-Ward, E., Kong, J., Israels, S. J., Gibson, S. B. (2008). Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ, 15(1). https://doi.org/10.1038/sj.cdd.4402233

  34. Masoodi, K. Z., Amin, I., Mansoor, S., Ahmed, N., Altay, V., Ozturk, M. (2020) Botanicals from the Himalayas with anticancer potential: an emphasis on the Kashmir Himalayas. InBiodiversity and Biomedicine (pp. 189–234). Academic Press.

  35. Younus, H. (2018). Therapeutic potentials of superoxide dismutase. International Journal of Health Sciences, 12(3), 88. https://doi.org/10.1016/j.cub.2014.03.034

  36. Juan, C. A., de la Lastra, J. M. P., Plou, F. J., Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (Ros) revisited: Outlining their role in biological macromolecules (dna, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences 22(9). https://doi.org/10.3390/ijms22094642

  37. Links, J. M., Groopman, J. D. (2010). Biomarkers of exposure, effect, and susceptibility. in: comprehensive toxicology, (2nd edn., vol. 1–14). https://doi.org/10.1016/B978-0-08-046884-6.00111-1

  38. Landau, G., Kodali, V. K., Malhotra, J. D., Kaufman, R. J. (2013). Detection of oxidative damage in response to protein misfolding in the endoplasmic reticulum. In: Methods in Enzymology. https://doi.org/10.1016/B978-0-12-405883-5.00014-4

  39. Sharma, J. N., Al-Omran, A. (2007). Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology, 15(6). https://doi.org/10.1007/s10787-007-0013-x

  40. Chen, H. L., Lan, X. Z., Wu, Y. Y., Ou, Y. W., Chen, T. C., Wu, W. T. (2017). The antioxidant activity and nitric oxide production of extracts obtained from the leaves of Chenopodium quinoa Willd. Biomed 7(4). https://doi.org/10.1051/bmdcn/2017070424

  41. Pierini, D., Bryan, N. S. (2015). Nitric oxide availability as a marker of oxidative stress. Methods in Molecular Biology, 1208. https://doi.org/10.1007/978-1-4939-1441-8_5

  42. Papi, S., Ahmadizar, F., Hasanvand, A. (2019). The role of nitric oxide in inflammation and oxidative stress. Immunopathol Persa 5(1). https://doi.org/10.15171/ipp.2019.08

  43. Li, Y., Li, Y., Fang, Z., Huang, D., Yang, Y., Zhao, D., Hang, M., & Wang, J. (2020). The effect of Malus doumeri leaf flavonoids on oxidative stress injury induced by hydrogen peroxide (H 2 O 2) in human embryonic kidney 293 T cells. BMC Complementary Medicine and Therapies, 20, 1–2. https://doi.org/10.1186/s12906-020-03072-6

  44. Liu, J., Tan, F., Liu, X., Yi, R., & Zhao, X. (2020). Grape skin fermentation by Lactobacillus fermentum CQPC04 has anti-oxidative effects on human embryonic kidney cells and apoptosis-promoting effects on human hepatoma cells. RSC Advances, 10(8), 4607–4620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Younus, H. (2018). Therapeutic potentials of superoxide dismutase. International Journal of Health Sciences (Qassim), 12(3):88-93.

  46. Harris, N., Costa, V., MacLean, M., Mollapour, M., Moradas-Ferreira, P., Piper, PW (2003). MnSOD overexpression extends the yeast chronological (G0) life span but acts independently of Sir2p histone deacetylase to shorten the replicative life span of dividing cells. Free Radical Biology & Medicine, 34(12). https://doi.org/10.1016/S0891-5849(03)00210-7

  47. Gomez-Cabrera, M. C., Salvador-Pascual, A., Cabo, H., Ferrando, B., Vina, J. (2015). Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radical Biology & Medicine, 86. https://doi.org/10.1016/j.freeradbiomed.2015.04.006

  48. McCarty, M. F., DiNicolantonio, J. J. (2015). An increased need for dietary cysteine in support of glutathione synthesis may underlie the increased risk for mortality associated with low protein intake in the elderly. Age (Omaha) 37(5). https://doi.org/10.1007/s11357-015-9823-8

  49. Deponte, M. (2017). The incomplete glutathione puzzle: Just guessing at numbers and figures? Antioxidants Redox Signal, 27(15). https://doi.org/10.1089/ars.2017.7123

  50. Nandi, A., Yan, L. J., Jana, C. K., Das, N. (2019). Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxidative Medicine and Cellular Longevity, 2019. https://doi.org/10.1155/2019/9613090

  51. Lele, M., Ansar, M., Chambliss, J., Garofalo, R. P., Casola, A. (2019). Protective Role Of Catalase In RSV Bronchiolitis. The Journal of Allergy and Clinical Immunology 143(2). https://doi.org/10.1016/j.jaci.2018.12.666

  52. Kang, M. Y., Kim, H. B., Piao, C., Lee, K. H., Hyun, J. W., Chang, I. Y. et al. (2013). The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death and Differentiation 20(1). https://doi.org/10.1038/cdd.2012.102

  53. Li, Y., Li, Y., Fang, Z., Huang, D., Yang, Y., Zhao, D., Hang, M., & Wang, J. (2020). The effect of Malus doumeri leaf flavonoids on oxidative stress injury induced by hydrogen peroxide (H 2 O 2) in human embryonic kidney 293 T cells. BMC Complementary Medicine and Therapies, 20, 1–2.

    Article  Google Scholar 

  54. Liu, J., Tan, F., Liu, X., Yi, R., & Zhao, X. (2020). Grape skin fermentation by Lactobacillus fermentum CQPC04 has anti-oxidative effects on human embryonic kidney cells and apoptosis-promoting effects on human hepatoma cells. RSC advances, 10(8), 4607–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gandhi, J., Khera, L., Gaur, N., Paul, C., Kaul, R. (2017). Role of modulator of inflammation cyclooxygenase-2 in gammaherpesvirus mediated tumorigenesis. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00538

  56. Barbieri, S. S., Eligini, S., Brambilla, M., Tremoli, E., Colli, S. (2003). Reactive oxygen species mediate cyclooxygenase-2 induction during monocyte to macrophage differentiation: Critical role of NADPH oxidase. Cardiovascular Research 60(1). https://doi.org/10.1016/S0008-6363(03)00365-1

Download references

Acknowledgements

The author extends their appreciation to the Deputyship for Research and Innovation, “Ministry of Education” in Saudi Arabia for funding this research (IFKSUOR3-033-1).

Funding

The authors received a financial support from the Deputyship for Research and Innovation, “Ministry of Education” in Saudi Arabia for funding this research (IFKSUOR3-033-1).

Author information

Authors and Affiliations

Authors

Contributions

The authors equally contributed to this study.

Corresponding author

Correspondence to Essa M. Sabi.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

This article is done by us together.

Consent to Publish

All authors are willing to publish this work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabi, E.M., AlAfaleq, N.O., Mujamammi, A.H. et al. Gramine Exerts Cytoprotective Effects and Antioxidant Properties Against H2O2-Induced Oxidative Stress in HEK 293 Cells. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04693-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04693-6

Keywords

Navigation