Skip to main content
Log in

Integration of Lysin into Chitosan Nanoparticles for Improving Bacterial Biofilm Inhibition

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial biofilms (BBFs) exhibit high drug resistance, antiphagocytosis, and extremely strong adhesion, and therefore can cause various diseases. They are also one of the important causes of bacterial infections. Thus, the effective removal of BBFs has attracted considerable research interest. Endolysins, which are efficient antibacterial bioactive macromolecules, have recently been receiving increasing attention. In this study, we overcame the deficiencies of endolysins via immobilization on chitosan nanoparticles (CS-NPs) by preparing LysST-3-CS-NPs using the ionic cross-linking reaction between CS-NPs and LysST-3, an endolysin purified using phage ST-3 expression. The obtained LysST-3-CS-NPs were verified and thoroughly characterized, their antimicrobial activity was investigated using microscopy, and their antibacterial efficacy on polystyrene surfaces was studied. The results obtained suggested that LysST-3-CS-NPs exhibit enhanced bactericidal properties and increased stability and can serve as reliable biocontrol agents for the prevention and treatment of Salmonella biofilm infections.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Stoodley, P., Sauer, K., Davies, D. G., & Costerton, J. W. (2002). Biofilms as complex differentiated communities. Annual Review of Microbiology, 56, 187–209. https://doi.org/10.1146/annurev.micro.56.012302.160705

    Article  CAS  PubMed  Google Scholar 

  2. Donlan, R. M. (2009). Preventing biofilms of clinically relevant organisms using bacteriophage. Trends in Microbiology, 17, 66–72. https://doi.org/10.1016/j.tim.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  3. Mah, T. F., Pitts, B., Pellock, B., Walker, G. C., Stewart, P. S., & O’Toole, G. A. (2003). A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature, 426, 306–310. https://doi.org/10.1038/nature02122

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lewis, K. (2001). Riddle of biofilm resistance. Antimicrobial Agents and Chemotherapy, 45, 999–1007. https://doi.org/10.1128/AAC.45.4.999-1007.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kolter, R., & Greenberg, E. P. (2006). Microbial sciences: The superficial life of microbes. Nature, 441, 300–302. https://doi.org/10.1038/441300a

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Silvestri, L., & Saene, H. (2010). Hospital-acquired infections due to Gram-negative bacteria. New England Journal of Medicine, 363(1482), 1483–1484. https://doi.org/10.1056/NEJMra0904124

  7. Monroe, D. (2007). Looking for chinks in the armor of bacterial biofilms. PLoS Biology, 5, e307. https://doi.org/10.1371/journal.pbio.0050307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Whiteley, M., Ott, J. R., Weaver, E. A., & Mclean, R. J. (2001). Effects of community composition and growth rate on aquifer biofilm bacteria and their susceptibility to Betadine disinfection. Environmental Microbiology, 3, 43–52. https://doi.org/10.1046/j.1462-2920.2001.00158.x

    Article  CAS  PubMed  Google Scholar 

  9. Mukherjee, P. K., Mohamed, S., Chandra, J., Kuhn, D., Kuhn, D., Liu, S., Antar, O. S., Munyon, R., Mitchell, A. P., Andes, D., Chance, M. R., Rouabhia, M., & Ghannoum, M. A. (2006). Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans To Form a biofilm on catheter surfaces through an ethanol-based mechanism. Infection and Immunity, 74, 3804–3816. https://doi.org/10.1128/IAI.00161-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Romero, R., Schaudinn, C., Kusanovic, J. P., Gorur, Z., Gotsch, F., Webster, P., Nhan-Chang, C.-L., Erez, O., Jai Kim, C., Espinoza, J., Gonçalves, J. F., Vaisbuch, E., Mazaki-Tovi, S., Hassan, S. S., & Costerton, J. W. (2008). Detection of a microbial biofilm in intraamniotic infection. American Journal of Obstetrics and Gynecology, 198, 135.e1-135.e5. https://doi.org/10.1016/j.ajog.2007.11.026

    Article  CAS  PubMed  Google Scholar 

  11. Hanlon, G. W., Denyer, S. P., Olliff, C. J., & Ibrahim, L. J. (2001). Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Applied and Environment Microbiology, 67, 2746–2753. https://doi.org/10.1128/AEM.67.6.2746-2753.2001

    Article  ADS  CAS  Google Scholar 

  12. Yurewicz, E. C., Ghalambor, M. A., & Heath, E. C. (1972). Bacteriophage-induced capsular polysaccharide depolymerase. Methods in Enzymology, 139, 990–996. https://doi.org/10.1016/0076-6879(72)28145-9

    Article  Google Scholar 

  13. Loessner, M. J. (2005). Bacteriophage endolysins—Current state of research and applications. Current Opinion in Microbiology, 8, 480–487. https://doi.org/10.1016/j.mib.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  14. Nelson, D., Loomis, L., & Fischetti, V. A. (2001). Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proceedings of the National academy of Sciences of the United States of America, 98, 4107–4112. https://doi.org/10.1073/pnas.061038398

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deutsch, S.-M., Guezenec, S., Piot, M., Foster, S., & Lortal, S. (2004). Mur-LH, the broad-spectrum endolysin of lactobacillus helveticus temperate bacteriophage φ-0303. Applied and Environment Microbiology, 70, 96–103. https://doi.org/10.1128/AEM.70.1.96-103.2004

    Article  ADS  CAS  Google Scholar 

  16. Schmitz, J. E., Ossiprandi, M. C., Rumah, K. R., & Fischetti, V. A. (2011). Lytic enzyme discovery through multigenomic sequence analysis in Clostridium perfringens. Applied Microbiology and Biotechnology, 89, 1783–1795. https://doi.org/10.1007/s00253-010-2982-8

    Article  CAS  PubMed  Google Scholar 

  17. Rashel, M., Uchiyama, J., Ujihara, T., Uehara, Y., Kuramoto, S., Sugihara, S., Yagyu, K.-I., Muraoka, A., Sugai, M., Hiramatsu, K., Honke, K., & Matsuzaki, S. (2007). Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. Journal of Infectious Diseases, 196, 1237–1247. https://doi.org/10.1086/521305

    Article  CAS  PubMed  Google Scholar 

  18. Shi, Y., Li, N., Yan, Y., Wang, H., Li, Y., Lu, C., & Sun, J. (2012). Combined antibacterial activity of phage lytic proteins holin and lysin from Streptococcus suis bacteriophage SMP. Current Microbiology, 65, 28–34. https://doi.org/10.1007/s00284-012-0119-2

    Article  CAS  PubMed  Google Scholar 

  19. Fischetti, V. A. (2005). Bacteriophage lytic enzymes: Novel anti-infectives. Trends in Microbiology, 13, 491–496. https://doi.org/10.1016/j.tim.2005.08.007

    Article  CAS  PubMed  Google Scholar 

  20. Liu, B., Lu, H., Li, Z., Yan, P., Liu, R., & Liu, X. (2022). Expression and biological activity of lytic proteins HolST-3 and LysST-3 of Salmonella phage ST-3. Microbial Pathogenesis, 169, 105624. https://doi.org/10.1016/j.micpath.2022.105624

    Article  CAS  PubMed  Google Scholar 

  21. Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, 29, 205–220. https://doi.org/10.1080/13102818.2015.1008192

    Article  CAS  PubMed  Google Scholar 

  22. Paikra, S. K., Mukherjee, S., Nayak, N., Bag, J., & Mishra, M. (2022). Impact of hierarchical architecture of Cryptotermes brevis Wing on the modulation of bacterial adhesion. Journal of Bionic Engineering, 19, 516–529. https://doi.org/10.1007/s42235-021-00148-y

    Article  Google Scholar 

  23. Gondil, V. S., Dube, T., Panda, J. J., Yennamalli, R. M., Harjai, K., & Chhibber, S. (2020). Comprehensive evaluation of chitosan nanoparticle based phage lysin delivery system; a novel approach to counter S. pneumoniae infections. International Journal of Pharmaceutics, 573, 118850. https://doi.org/10.1016/j.ijpharm.2019.118850

    Article  CAS  PubMed  Google Scholar 

  24. Kaur, J., Kour, A., Panda, J. J., Harjai, K., & Chhibber, S. (2020). Exploring endolysin-loaded alginate-chitosan nanoparticles as future remedy for staphylococcal infections. AAPS PharmSciTech, 21, 233. https://doi.org/10.1208/s12249-020-01763-4

    Article  CAS  PubMed  Google Scholar 

  25. Amin, S., Sher, M., Ali, A., Rehman, M. F., Hayat, A., Ikram, M., Abbas, A., & Amin, H. M. A. (2022). Sulfonamide-functionalized silver nanoparticles as an analytical nanoprobe for selective Ni(II) sensing with synergistic antimicrobial activity. Environmental Nanotechnology Monitoring & Management, 18, 100735. https://doi.org/10.1016/j.enmm.2022.100735

    Article  CAS  Google Scholar 

  26. Estevez, M. B., Raffaelli, S., Mitchell, S. G., Faccio, R., & Alborés, S. (2020). Biofilm eradication using biogenic silver nanoparticles. Molecules, 25, 2023. https://doi.org/10.3390/molecules25092023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, T., Wu, C., Fu, S., Wang, L., Yuan, C., Chen, S., & Hu, Y. (2017). Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity. Carbohydrate Polymers, 155, 192–200. https://doi.org/10.1016/j.carbpol.2016.08.076

    Article  CAS  PubMed  Google Scholar 

  28. Ahmad, R., & Sardar, M. (2015). Enzyme immobilization: An overview on nanoparticles as immobilization matrix. Biochemistry and Analytical Biochemistry, 4, 1000178. https://doi.org/10.4172/2161-1009.1000178

    Article  CAS  Google Scholar 

  29. Wang, Y., Li, S., Jin, M., Han, Q., Liu, S., Chen, X., & Han, Y. (2020). Enhancing the thermo-stability and anti-bacterium activity of lysozyme by immobilization on chitosan nanoparticles. International Journal of Molecular Sciences, 21, 1635. https://doi.org/10.3390/ijms21051635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hande, O., Sinem, E., Dabanca, M. B., Başbülbül, G., Uygun, M., & Uygun, D. A. (2019). Bacteria killer enzyme attached magnetic nanoparticles. Materials Science & Engineering, C: Materials for Biological Applications, 94, 558–564. https://doi.org/10.1016/j.msec.2018.10.003

    Article  CAS  Google Scholar 

  31. Shugar, D. (1952). The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. BBA. Biochimica et Biophysica Acta, 8, 302–309. https://doi.org/10.1016/0006-3002(52)90045-0

    Article  CAS  PubMed  Google Scholar 

  32. Barros, C. H. N., Fulaz, S., Vitale, S., Casey, E., & Quinn, L. (2020). Interactions between functionalised silica nanoparticles and Pseudomonas fluorescens biofilm matrix: A focus on the protein corona. Plos One, 15, e0236441. https://doi.org/10.1371/journal.pone.0236441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, L., & Hsieh, Y. L. (2006). Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydrate Research, 341, 374–381. https://doi.org/10.1016/j.carres.2005.11.028

    Article  CAS  PubMed  Google Scholar 

  34. Wang, X., Du, Y., Yang, J., Wang, X., Shi, X., & Hu, Y. (2006). Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer, 47, 6738–6744. https://doi.org/10.1016/j.polymer.2006.07.026

    Article  CAS  Google Scholar 

  35. Hamill, A. C., Wang, S. C., & Lee, C. T. (2005). Probing lysozyme conformation with light reveals a new folding intermediate. Biochemistry, 44, 15139–15149. https://doi.org/10.1021/bi051646c

    Article  CAS  PubMed  Google Scholar 

  36. Blout, E. R., De Loze, C. D., & Asadourian, A. (1961). The deuterium exchange of water-soluble polypeptides and proteins as measured by infrared spectroscopy. Journal of the American Chemical Society, 83, 1895–1900. https://doi.org/10.1021/ja01469a028

    Article  CAS  Google Scholar 

  37. Corazzari, I., Nisticò, R., Turci, F., Faga, M. G., Franzoso, F., Tabasso, S., & Magnacca, G. (2015). Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polymer Degradation and Stability, 112, 1–9. https://doi.org/10.1016/j.polymdegradstab.2014.12.006

    Article  CAS  Google Scholar 

  38. Koshani, R., Aminlari, M., Niakosari, M., Farahnaky, A., & Mesbahi, G. (2015). Production and properties of tragacanthin-conjugated lysozyme as a new multifunctional biopolymer. Food Hydrocolloids, 47, 69–78. https://doi.org/10.1016/j.foodhyd.2014.12.023

    Article  CAS  Google Scholar 

  39. Prosapio, V., Reverchon, E., & De Marco, I. (2016). Production of lysozyme microparticles to be used in functional foods, using an expanded liquid antisolvent process. Journal of Supercritical Fluids, 107, 106–113. https://doi.org/10.1016/j.supflu.2015.09.001

    Article  CAS  Google Scholar 

  40. Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39, 549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x

    Article  CAS  PubMed  Google Scholar 

  41. Parker, F. S. (1983). Applications of infrared, Raman, and resonance Raman spectroscopy in biochemistry, Applications of Infrared, Raman, and Resonance Raman Spectroscopy In Biochemistry Springer New York, NY. https://doi.org/10.1042/bst0121155

  42. Lopez-Rubio, A., Flanagan, B. M., Gilbert, E. P., & Gidley, M. J. (2008). A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers, 89, 761–768. https://doi.org/10.1002/bip.21005

    Article  CAS  PubMed  Google Scholar 

  43. Westfahl, H., & Cardoso, M. B. (2011). Accessing the hidden lamellar nanostructure of semi-crystalline nascent polymers by small-angle X-ray scattering contrast variation. Journal of Applied Crystallography, 44, 1123–1126. https://doi.org/10.1107/S0021889811033255

    Article  ADS  CAS  Google Scholar 

  44. Gutsche, A., Guo, X., Dingenouts, N., & Nirschl, H. (2015). Synthesis and small angle X-ray scattering (SAXS) characterization of silica spheres covered with gel-like particles formed by means of solvent evaporation. Powder Technology, 278, 257–265. https://doi.org/10.1016/j.powtec.2015.03.037

    Article  CAS  Google Scholar 

  45. Yang, Z., Gu, Q., Lam, E., Tian, F., Chaieb, S., & Hemar, Y. (2016). In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS. Food Hydrocolloids, 56, 58–61. https://doi.org/10.1016/j.foodhyd.2015.12.007

    Article  CAS  Google Scholar 

  46. Hegde, A. H., Sandhya, B., & Seetharamappa, J. (2013). Investigations to reveal the nature of interactions of human hemoglobin with curcumin using optical techniques. International Journal of Biological Macromolecules, 52, 133–138. https://doi.org/10.1016/j.ijbiomac.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  47. Billsten, P., Wahlgren, M., Arnebrant, T., McGuire, J., & Elwing, H. (1995). Structural changes of T4 lysozyme upon adsorption to silica nanoparticles measured by circular dichroism. Journal of Colloid and Interface Science, 175, 77–82. https://doi.org/10.1006/jcis.1995.1431

    Article  ADS  CAS  Google Scholar 

  48. Wang, C., Fu, X., & Yang, L. (2007). Water-soluble chitosan nanoparticles as a novel carrier system for protein delivery. Chinese Science Bulletin, 52, 883–889. https://doi.org/10.1007/s11434-007-0127-y

    Article  ADS  CAS  Google Scholar 

  49. Chiou, S. H., & Wu, W. T. (2004). Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials, 25, 197–204. https://doi.org/10.1016/s0142-9612(03)00482-4

    Article  CAS  PubMed  Google Scholar 

  50. Meng, X., Shi, Y., Ji, W., Meng, X., Zhang, J., Wang, H., Lu, C., Sun, J., & Yan, Y. (2011). Application of a bacteriophage lysin to disrupt biofilms formed by the animal pathogen Streptococcus suis. Applied and Environment Microbiology, 77, 8272–8279. https://doi.org/10.1128/AEM.05151-11

    Article  ADS  CAS  Google Scholar 

  51. Domenech, M., García, E., & Moscoso, M. (2011). In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases. Antimicrobial Agents and Chemotherapy, 55, 4144–4148. https://doi.org/10.1128/AAC.00492-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Beckloff, N., Laube, D., Castro, T., Furgang, D., Park, S., Perlin, D., Clements, D., Tang, H., Scott, R. W., Tew, G. N., & Diamond, G. (2007). Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrobial Agents and Chemotherapy, 51, 4125–4132. https://doi.org/10.1128/AAC.00208-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, J., Dou, X., Song, J., Lyu, Y., Zhu, X., Xu, L., Li, W., & Shan, A. (2018). Antimicrobial peptides: Promising alternatives in the postfeeding antibiotic era. Medicinal Research Reviews, 39, 831859. https://doi.org/10.1002/med.21542

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Fundamental Research Funds for the Central Universities (Grant No. E1E40506) and Weiqiao-UCAS Special Projects on Low-Carbon Technology Development (Grant No. GYY-DTFZ-2022-008).

Author information

Authors and Affiliations

Authors

Contributions

B. L. and X. L.: Conceptualization. B. L.: methodology. Z. L.: software, Q. G.: Validation. R. L.: Formal analysis. X. L.: Investigation. R. L.: Resources. X. G.: Data curation. B. L.: Writing—original draft preparation. Q. G.: Writing—review and editing. R. L. and B. L: Visualization. X. L.: Supervision. R. L.: Project administration. X. L.: Funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ruyin Liu or Xinchun Liu.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 547 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Li, Z., Guo, Q. et al. Integration of Lysin into Chitosan Nanoparticles for Improving Bacterial Biofilm Inhibition. Appl Biochem Biotechnol 196, 1592–1611 (2024). https://doi.org/10.1007/s12010-023-04627-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04627-2

Keywords

Navigation