Skip to main content

Advertisement

Log in

Improving Biohydrogen Production by Dark Fermentation of Milk Processing Wastewater by Physicochemical and Enzymatic Pretreatments

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biohydrogen is considered an alternative energy reserve. Dark fermentation is one of the important green hydrogen production techniques that utilizes organic waste as raw material. It is a promising bioconversion, easy, not expensive, and cost-effective process. Milk processing wastewater (MPWW) is an organic effluent generated in large volumes on a daily basis and disposed directly into the environment. In this research, the study of biochemical hydrogen potential (BHP) test of MPWW was evaluated and used as substrate (S). A waste sludge was used as an inoculum (I) and source of bacteria. Both substrate and inoculum were analyzed and the study was based mainly on the ratio of volatile solids (VS) of inoculum and substrate subsequently, which was noted as I/S. Different substrate pretreatments were performed: ultrasonic, thermal, chemical, and enzymatic hydrolysis. The I/S ratio impact was investigated and evaluated the hydrogen production improvement. Modified Gompertz and modified Logistic kinetic models were employed for the kinetic modeling of cumulative hydrogen production values. Results show that I/S ratio of 1/4 gVS/gVS resulted from the best hydrogen production of 59.96 mL during 30 days of MPWW fermentation without pretreatment. It was also shown that all the adopted pretreatments enhanced hydrogen production, whereas ultrasonic pretreatment for 5 min increased the production by only 14.84%. Heat pretreatment was more efficient, where the hydrogen production increased from 60 to 162 mL (170% of improvement) using heat shock at 90 °C for 30 min. The impact of chemical pretreatment was different from a reagent to another. Pretreatment using calcium hydroxide resulted in the biggest hydrogen production of 165.3 mL (175.5%) compared to the other chemical pretreatments. However, the best hydrogen production was given by the biological pretreatment using enzymatic hydrolysis (Lactase) resulting in 254 mL of hydrogen production, which is equivalent to 323.62% of production improvement. Modified Gompertz and Logistic kinetic models fitted well with experimental data. Thus, the enzymatic hydrolysis of MPWW proved to be a promising technique for biohydrogen production enhancement.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Abbreviations

MPWW:

Milk processing wastewater

TS:

Total solids

TVS:

Total volatile solids

S:

Substrate

I:

Inoculum

gVS added :

Gram volatile suspended added

TCOD:

Total chemical oxygen demand

SCOD:

Soluble chemical oxygen demand

TKN:

Total Kjeldahl nitrogen

U5:

Ultrasonic pretreatment for 5 min

U10:

Ultrasonic pretreatment for 10 min

U20:

Ultrasonic pretreatment for 20 min

T80:

Thermal pretreatment at 80 °C

T90:

Thermal pretreatment at 90 °C

T100:

Thermal pretreatment at 100 °C

Enzyme:

Enzymatic pretreatment

GO:

Glucose oxidase

References

  1. Alibardi, L., & Cossu, R. (2015). Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Management, 36, 147–155.

    Article  CAS  PubMed  Google Scholar 

  2. André, N., & Hajek, M. (2019). Robust environmental life cycle assessment of electric VTOL concepts for urban air mobility (p. 3473). AIAA aviation 2019 forum.

    Google Scholar 

  3. Anjum, S., Aslam, S., Hussain, N., Bilal, M., Boczkaj, G., Smułek, W., Jesionowski, T., & Iqbal, H. M. N. (2023). Bioreactors and biophoton-driven biohydrogen production strategies. International Journal of Hydrogen Energy, 48(55), 21176–21188.

    Article  CAS  Google Scholar 

  4. APHA, AWWA, WEF, (2012). “Standard methods for examination of water and wastewater.,” APHA, AWWA, WEF. “Standard Methods Exam. Water Wastewater.”

  5. Ariunbaatar, J., Panico, A., Yeh, D. H., Pirozzi, F., Lens, P. N. L., & Esposito, G. (2015). Enhanced mesophilic anaerobic digestion of foodwaste by thermal pretreatment: Substrate versus digestate heating. Waste Management, 46, 176–181.

    Article  CAS  PubMed  Google Scholar 

  6. Bouaita, R., Derbal, K., & Zekri, H. (2018). Evaluation of ultrasonic pretreatment on anaerobic digestion of citrus orange peel waste for methane production. New Technology and Materials, 8(3), 76–81.

    CAS  Google Scholar 

  7. Bouaita, R., Derbal, K., Zekri, H., Antonio, P., Achouri, O., & Francesco. P. (2019). Biogas production by an anaerobic digestion process from orange peel waste and its improvement by limonene leaching: Investigation of H2O2 pre-treatment effect. 1-9. https://doi.org/10.1080/15567036.2019.1692975

  8. Bouchareb, R., Derbal, K., Özay, Y., Bilici, Z., & Dizge, N. (2020). Combined natural/chemical coagulation and membrane filtration for wood processing wastewater treatment. Journal of Water Process Engineering, 37, 101521.

    Article  Google Scholar 

  9. Bouchareb, E.M., Kerroum, D., Bezirhan Arikan, E., Isik, Z., & Dizge, N. (2021). Production of bio-hydrogen from bulgur processing industry wastewater. Energy Sources Part A: Recovery, Utilization, and Environmental Effects. 1–14. https://doi.org/10.1080/15567036.2021.1877853

  10. Brooke-Taylor, S., Dwyer, K., Woodford, K., & Kost, N. (2017). Systematic review of the gastrointestinal effects of A1 compared with A2 β-casein. Advances in Nutrition, 8(5), 739–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cui, M., Yuan, Z., Zhi, X., Wei, L., & Shen, J. (2010). Biohydrogen production from poplar leaves pretreated by different methods using anaerobic mixed bacteria. Hydrogen Energy, 35(9), 4041–4047.

    Article  CAS  Google Scholar 

  12. de Miranda, P. E. V. (2019). Hydrogen energy: sustainable and perennial. Science and engineering of hydrogen-based energy technologies (pp. 1–38). Academic Press.

    Google Scholar 

  13. Degremont. (1978). Mémento technique de l’eau. 8éme édition.

  14. Dawood, F., Anda, M., & Shafiullah, G. M. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847–3869.

    Article  CAS  Google Scholar 

  15. Dung, T. N. B., Lay, C. H., Nguyen, D. D., Chang, S. W., Banu, J. R., Hong, Y., & Park, J. H. (2023). Improving the biohydrogen production potential of macroalgal biomass through mild acid dispersion pretreatment, Fuel, 332. Part, 1, 125895.

    Google Scholar 

  16. Fan, D., Wang, L., Chen, W., Ma, S., Ma, W., Liu, X., & Zhang, H. (2014). Effect of microwave on lamellar parameters of rice starch through small-angle X-ray scattering. Food Hydrocolloids, 35, 620–626.

    Article  CAS  Google Scholar 

  17. François-Lopez, E. (2016). Production de biohydrogène par fermentation obscure: potentiel de différentes biomasses et variabilité microbienne (Doctoral dissertation, Université de Strasbourg).

  18. Hitit, Z. Y., Lazaro, C. Z., & Hallenbeck, P. C. (2017). Increased hydrogen yield and COD removal from starch/glucose based medium by sequential dark and photo-fermentation using Clostridium butyricum and Rhodopseudomonas palustris. International Journal of Hydrogen Energy, 42(30), 18832–18843.

    Article  CAS  Google Scholar 

  19. Hren, R., Vujanović, A., Fan, Y. V., Klemeš, J. J., Krajnc, D., & Čuček, L. (2023). Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment. Renewable and Sustainable Energy Reviews, 173, 113113.

    Article  CAS  Google Scholar 

  20. Jones, D. T., & Woods, D. R. (1986). Acetone-butanol fermentation revisited. Microbiological Reviews, 50(4), 484–524. https://doi.org/10.1128/mmbr.50.4.484-524.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jung, K. W., Kim, D. H., & Shin, H. S. (2010). Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor. International Journal of Hydrogen Energy, 35, 13370–13378.

    Article  CAS  Google Scholar 

  22. Kalisz, H. M., Hecht, H. J., Schomburg, D., & Schmid, R. D. (1991). Effects of carbohydrate depletion on the structure, stability and activity of glucose oxidase from Aspergillus niger. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1080(2), 138–142.

    Article  CAS  PubMed  Google Scholar 

  23. Kim, T. H., Lee, S. R., Nam, Y. K., Yang, J., Park, C., & Lee, M. (2009). Disintegration of excess activated sludge by hydrogen peroxide oxidation. Desalination, 246(1–3), 275–284.

    Article  CAS  Google Scholar 

  24. Kumar, M.P., Balaji, G. 2023. Evaluation of petroleum additives’ effect on a motorcycle engine. International Journal of Ambient Energy.

  25. Li, C., & Fang, H. H. (2007). Inhibition of heavy metals on fermentative hydrogen production by granular sludge. Chemosphere, 67(4), 668–673.

    Article  CAS  PubMed  Google Scholar 

  26. Martins, A. H., Rouboa, A., & Monteiro, E. (2023). On the green hydrogen production through gasification processes: A techno-economic approach. Journal of Cleaner Production, 383, 135476.

    Article  CAS  Google Scholar 

  27. Morgan, J. W., Forster, C. F., & Evison, L. (1990). A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Research, 24(6), 743–750. https://doi.org/10.1016/0043-1354(90)90030-A

    Article  CAS  Google Scholar 

  28. Mu, J., Woods, J., Zhou, Y. P., Roy, R. S., Li, Z., Zycband, E., & Zhang, B. B. (2006). Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic β-cell mass and function in a rodent model of type 2 diabetes. Diabetes, 55(6), 1695–1704.

    Article  CAS  PubMed  Google Scholar 

  29. Murillo, M. M. (2004). Caractérisation de l’effet d’un traitement au peroxyde d’hydrogène sur une boue. Application à la réduction de la production de boue. [Thèse de doctorat]. L’institut National des Sciences Appliquees, Toulouse.

  30. Pál, M., Tajti, J., Szalai, G., Peeva, V., Végh, B., & Janda, T. (2018). Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants. Scientific reports, 8(1), 12839.

    Article  PubMed  PubMed Central  Google Scholar 

  31. ParthibaKarthikeyan, O., Trably, E., Mehariya, S., Bernet, N., Wong, J. W. C., & Carrere, H. (2018). Pretreatment of food waste for methane and hydrogen recovery: A review. Bioresource Technology, 249, 1025–1039. https://doi.org/10.1016/j.biortech.2017.09.10

    Article  CAS  Google Scholar 

  32. Pazur, J. H., & Kleppe, K. (1964). The oxidation of glucose and related compounds by glucose oxidase from Aspergillus niger. Biochemistry, 3(4), 578–583.

    Article  CAS  PubMed  Google Scholar 

  33. Prabakar, D., Manimudi, V. T., Sampath, S., Mahapatra, D. M., Rajendran, K., & Pugazhendhi, A. (2018). Advanced biohydrogen production using pretreated industrial waste: outlook and prospects. Renewable and Sustainable Energy Reviews, 96, 306–324.

    Article  CAS  Google Scholar 

  34. Pyzik, A., Ciezkowska, M., Krawczyk, P. S. et al. (2018). Comparative analysis of deep sequenced methanogenic communities: Identification of microorganisms responsible for methane production. Microbial Cell Factories, 17.

  35. Quéméneur, M., Bittel, M., Trably, E., Dumas, C., Fourage, L., Ravot, G., … Carrère, H. (2012). Effect of enzyme addition on fermentative hydrogen production from wheat straw. International Journal of Hydrogen Energy, 37(14), 10639–10647.

  36. Rambabu, K., Bharath, G., Thanigaivelan, A., Das, D. B., Show, P. L., & Banat, F. (2021). Augmented biohydrogen production from rice mill wastewater through nano-metal oxides assisted dark fermentation. Bioresource technology, 319, 124243.

    Article  CAS  PubMed  Google Scholar 

  37. Risberg, K., Sun, L., Levén, L., Horn, S. J., & Schnürer, A. (2013). Biogas production from wheat straw and manure impact of pretreatment and process operating parameters. Bioresource Technology, 149, 232–237.

    Article  CAS  PubMed  Google Scholar 

  38. Roger, C., & Grandperrin, R. (1976). Pelagic food webs in the tropical Pacific. Limnology and Oceanography, 21(5), 731–735.

    Article  Google Scholar 

  39. Siskin, M., & Katritzky, A. R. (2001). Reactivity of organic compounds in superheated water: General background. Chemical Reviews, 101(4), 825–836.

    Article  CAS  PubMed  Google Scholar 

  40. Subramanian, B., & Thangavel, V. (2020). Analysis of onsite HHO gas generation system. International Journal of Hydrogen Energy, 45(28), 14218–14231.

    Article  CAS  Google Scholar 

  41. Subramanian, B., & Ismail, S. (2018). Production and use of HHO gas in IC engines. International Journal of Hydrogen Energy, 43(14), 7140–7154.

    Article  CAS  Google Scholar 

  42. Swathy, R., Rambabu, K., Banat, F., Ho, S. H., Chu, D. T., & Show, P. L. (2020). Production and optimization of high grade cellulase from waste date seeds by Cellulomonas uda NCIM 2353 for biohydrogen production. International Journal of Hydrogen Energy, 45(42), 22260–22270.

    Article  CAS  Google Scholar 

  43. Van Ginkel, S., & Logan, B. E. (2005). Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environmental Science & Technology, 39(23), 9351–9356.

    Article  Google Scholar 

  44. Zagrodnik, R., & Laniecki, M. (2017). The effect of pH on cooperation between dark and photo fermentztive bacteria in a co-culture process for hydrogen production from starch. International Journal of Hydrogen Energy, 42, 2878–2888.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EMB, KD, and RB contributed to the study conception and design. Milk processing wastewater and characterization were supplied by RB and KS. Biohydrogen production by dark fermentation using milk processing wastewater was carried out by SM, HL, FM, and AS. SO and RB carried out the experiments of physicochemical and enzymatic pretreatments. ND and RB wrote the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nadir Dizge.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 179 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchareb, E.M., Derbal, K., Bedri, R. et al. Improving Biohydrogen Production by Dark Fermentation of Milk Processing Wastewater by Physicochemical and Enzymatic Pretreatments. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04619-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04619-2

Keywords

Navigation