Skip to main content
Log in

Essential Oils Infused Poly-ε-Caprolactone/Gelatin Electrospun Nanofibrous Mats: Biocompatibility and Antibacterial Study

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Infections caused by antibiotic-resistant pathogens result in a delayed wound-healing process. As an approach to prevent infections, alternatives in the form of natural antimicrobial products have become public interest. Essential oils derived from plants are used as antimicrobials owing to their broad-spectrum activity against pathogenic organisms. In this study, essential oil from seeds of watermelon, jackfruit, and papaya was incorporated into poly-ε-caprolactone/gelatin nanofibers using an electrospinning technique. The synthesized nanofibers were smooth, continuous, and bead-free. The nanofibers were found to be mechanically competent as confirmed by the universal tensile tester. The antibacterial activity of the various essential oil-loaded nanofibrous mats was determined by disc diffusion assay. Furthermore, they were found to be non-toxic and biocompatible by MTT and CMFDA assays on fibroblast cells. The obtained results have demonstrated that essential oil-loaded nanofiber mats are promising alternatives to conventional antibacterial wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Monika, P., Chandraprabha, M. N., Rangarajan, A., Waiker, P. V., & Chidambara Murthy, K. N. (2021). Challenges in healing wound: Role of complementary and alternative medicine. Frontiers in Nutrition, 8 791899 https://doi.org/10.3389/FNUT.2021.791899

  2. Shadmi, E., Chen, Y., Dourado, I., Faran-Perach, I., Furler, J., Hangoma, P., & Willems, S. (2020). Health equity and COVID-19: Global perspectives. International Journal for Equity in Health, 19(1), 1–16. https://doi.org/10.1186/s12939-020-01218-z

    Article  Google Scholar 

  3. Sarheed, O., Ahmed, A., Shouqair, D., & Boateng, J. (2016). Antimicrobial dressings for improving wound healing. Wound Healing - New insights into Ancient Challenges. https://doi.org/10.5772/63961

    Article  Google Scholar 

  4. Williamson, D. A., Carter, G. P., & Howden, B. P. (2017). Current and emerging topical antibacterials and antiseptics: Agents, action, and resistance patterns. Clinical Microbiology Reviews, 30, 827–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qin, J., Chen, F., Wu, P., & Sun, G. (2022). Recent advances in bioengineered scaffolds for cutaneous wound healing. Frontiers in Bioengineering and Biotechnology, 10, 244. https://doi.org/10.3389/FBIOE.2022.841583/BIBTEX

    Article  Google Scholar 

  6. Fabio, G., Romanucci, V., Marino, C., Pisanti, A., & Zarrelli, A. (2015). Gymnema sylvestre R. Br., an Indian medicinal herb: Traditional uses, chemical composition, and biological activity. Current pharmaceutical biotechnology, 16(6), 506–516 https://doi.org/10.2174/138920101606150407112903

  7. Johnston, M., McBride, M., Dahiya, D., Owusu-Apenten, R., & Nigam, P. S. (2018). Antibacterial activity of Manuka honey and its components: An overview. AIMS Microbiology, 4(4), 655. https://doi.org/10.3934/MICROBIOL.2018.4.655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharmeen, J. B., Mahomoodally, F. M., Zengin, G., & Maggi, F. (2021). Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules, 26(3), 666. https://doi.org/10.3390/MOLECULES26030666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhavaniramya, S., Vishnupriya, S., Al-Aboody, M. S., Vijayakumar, R., & Baskaran, D. (2019). Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain & Oil Science and Technology, 2(2), 49–55. https://doi.org/10.1016/J.GAOST.2019.03.001

    Article  Google Scholar 

  10. Sadekuzzaman, M., Yang, S., Mizan, M. F. R., & Ha, S. D. (2015). Current and recent advanced strategies for combating biofilms. Comprehensive Reviews in Food Science and Food Safety, 14(4), 491–509. https://doi.org/10.1111/1541-4337.12144

    Article  Google Scholar 

  11. Vaughn, A. R., Clark, A. K., Sivamani, R. K., & Shi, V. Y. (2018). Natural oils for skin-barrier repair: Ancient compounds now backed by modern science. American journal of clinical dermatology, 19(1), 103–117. https://doi.org/10.1007/S40257-017-0301-1

    Article  PubMed  Google Scholar 

  12. Moore, E. M., Wagner, C., & Komarnytsky, S. (2020). The enigma of bioactivity and toxicity of botanical oils for skin care. Frontiers in Pharmacology, 11, 1–17. https://doi.org/10.3389/fphar.2020.00785

    Article  CAS  Google Scholar 

  13. Brandao, R. M., Cardoso, M., & das G., Batista, L. R., Caetano, A. R. S., Lemos, A. C. C., Martins, M. A., … De Oliveira, J. E. (2022). Antifungal and physicochemical properties of Ocimum essential oil loaded in poly(lactic acid) nanofibers. Letters in Applied Microbiology, 74(5), 765–776. https://doi.org/10.1111/LAM.13661

    Article  CAS  PubMed  Google Scholar 

  14. Ullah, A., Saito, Y., Ullah, S., Haider, M. K., Nawaz, H., Duy-Nam, P., & Kim, I. S. (2021). Bioactive sambong oil-loaded electrospun cellulose acetate nanofibers: Preparation, characterization, and in-vitro biocompatibility. International Journal of Biological Macromolecules, 166, 1009–1021. https://doi.org/10.1016/j.ijbiomac.2020.10.257

    Article  CAS  PubMed  Google Scholar 

  15. Akter, F., & Haque, M. (2020). Jackfruit waste: A promising source of food and feed. Annals of Bangladesh Agriculture, 23(1), 91–102. https://doi.org/10.3329/aba.v23i1.51477

    Article  Google Scholar 

  16. Angelova-Romova, M. Y., Simeonova, Z. B., Petkova, Z. Y., Antova, G. A., & Teneva, O. T. (2019). Lipid composition of watermelon seed oil. Bulgarian Chemical Communications, 51(August), 268–272.

    Google Scholar 

  17. Dotto, J. M., & Abihudi, S. A. (2021). Nutraceutical value of Carica papaya: A review. Scientific African, 13, e00933. https://doi.org/10.1016/j.sciaf.2021.e00933

    Article  CAS  Google Scholar 

  18. Liu, Y., Zhou, S., Gao, Y., & Zhai, Y. (2019). Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer. Asian Journal of Pharmaceutical Sciences, 14(2), 130–143. https://doi.org/10.1016/j.ajps.2018.04.004

    Article  PubMed  Google Scholar 

  19. Zhang, Q., Oh, J., Park, C. H., Baek, J., Ryoo, H., & Woo, K. M. (2017). Effects of dimethyloxalylglycine-embedded poly (ε-caprolactone) fiber meshes on wound healing in diabetic rats. ACS applied materials & interfaces, 9(9), 7950–7963. https://doi.org/10.1021/acsami.6b15815

    Article  CAS  Google Scholar 

  20. Ramalingam, R., Dhand, C., Mayandi, V., Leung, C. M., Ezhilarasu, H., Karuppannan, S. K., & Arunachalam, K. D. (2021). Core-shell structured antimicrobial nanofiber dressings containing herbal extract and antibiotics combination for the prevention of biofilms and promotion of cutaneous wound healing. ACS Applied Materials and Interfaces, 13, 24356–24369. https://doi.org/10.1021/acsami.0c20642

    Article  CAS  PubMed  Google Scholar 

  21. Ramalingam, R., Dhand, C., Leung, C. M., Ong, S. T., Annamalai, S. K., Kamruddin, M., & Arunachalam, K. D. (2019). Antimicrobial properties and biocompatibility of electrospun poly-ε-caprolactone fibrous mats containing Gymnema sylvestre leaf extract. Materials Science & Engineering C, 98, 503–514. https://doi.org/10.1016/j.msec.2018.12.135

    Article  CAS  Google Scholar 

  22. Ramalingam, R., Dhand, C., Leung, C., Ezhilarasu, H., Prasannan, P., Ong, S., & Arunachalam, K. (2019). Poly-ε-caprolactone/gelatin hybrid electrospun composite nanofibrous mats containing ultrasound assisted herbal extract: Antimicrobial and cell proliferation study. Nanomaterials, 9(3), 462. https://doi.org/10.3390/nano9030462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hernández-Santos, B., Rodríguez-Miranda, J., Herman-Lara, E., Torruco-Uco, J. G., Carmona-García, R., Juárez-Barrientos, J. M., & Martínez-Sánchez, C. E. (2016). Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrasonics Sonochemistry, 31, 429–436. https://doi.org/10.1016/j.ultsonch.2016.01.029

    Article  CAS  PubMed  Google Scholar 

  24. Jin, G., Prabhakaran, M. P., Kai, D., Kumar, S., Arunachalam, K. D., & Ramakrishna, S. (2013). Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 34(3), 724–734. https://doi.org/10.1016/j.biomaterials.2012.10.026

    Article  CAS  PubMed  Google Scholar 

  25. Dai, X., Liu, J., Zheng, H., Wichmann, J., Hopfner, U., Sudhop, S., & Schilling, A. F. (2017). Nano-formulated curcumin accelerates acute wound healing through Dkk-1-mediated fibroblast mobilization and MCP-1-mediated anti-inflammation. NPG Asia Materials, 9(3), e368. https://doi.org/10.1038/am.2017.31

    Article  CAS  Google Scholar 

  26. Verma, N. K., Conroy, J., Lyons, P. E., Coleman, J., O’Sullivan, M. P., Kornfeld, H., & Volkov, Y. (2012). Autophagy induction by silver nanowires: A new aspect in the biocompatibility assessment of nanocomposite thin films. Toxicology and Applied Pharmacology, 264(3), 451–461. https://doi.org/10.1016/j.taap.2012.08.023

    Article  CAS  PubMed  Google Scholar 

  27. Dhand, C., Venkatesh, M., Barathi, V. A., Harini, S., Bairagi, S., Leng, G. T., & E., …Lakshminarayanan, R. (2017). Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity. Biomaterials, 138, 153–168. https://doi.org/10.1016/j.biomaterials.2017.05.043

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, L., Wang, Z., Xiao, Y., Liu, P., Wang, S., Zhao, Y., & Shi, X. (2018). Electrospun PEGylated PLGA nanofibers for drug encapsulation and release. Materials Science and Engineering C, 91, 255–262. https://doi.org/10.1016/j.msec.2018.05.045

    Article  CAS  PubMed  Google Scholar 

  29. Choy, S. Y., Prasad, K. M. N., Wu, T. Y., Raghunandan, M. E., Yang, B., Phang, S. M., & Ramanan, R. N. (2017). Isolation, characterization and the potential use of starch from jackfruit seed wastes as a coagulant aid for treatment of turbid water. Environmental Science and Pollution Research, 24(3), 2876–2889. https://doi.org/10.1007/s11356-016-8024-z

    Article  CAS  PubMed  Google Scholar 

  30. Rai, A., Mohanty, B., & Bhargava, R. (2015). Modeling and response surface analysis of supercritical extraction of watermelon seed oil using carbon dioxide. Separation and Purification Technology, 141, 354–365. https://doi.org/10.1016/j.seppur.2014.12.016

    Article  CAS  Google Scholar 

  31. Senrayan, J., & Venkatachalam, S. (2019). A short extraction time of vegetable oil from Carica papaya L. seeds using continuous ultrasound acoustic cavitation: Analysis of fatty acid profile and thermal behavior. Journal of Food Process Engineering, 42(1), 1–9. https://doi.org/10.1111/jfpe.12950

    Article  CAS  Google Scholar 

  32. Joshi, M. K., Tiwari, A. P., Pant, H. R., Shrestha, B. K., Kim, H. J., Park, C.-H., & Kim, C. S. (2015). In situ generation of cellulose nanocrystals in polycaprolactone nanofibers: Effects on crystallinity, mechanical strength, biocompatibility, and biomimetic mineralization. ACS Applied Materials and Interfaces, 7(35), 19672–19683.

    Article  CAS  PubMed  Google Scholar 

  33. Wong, S. C., Baji, A., & Leng, S. (2008). Effect of fiber diameter on tensile properties of electrospun poly(ε-caprolactone). Polymer, 49(21), 4713–4722. https://doi.org/10.1016/j.polymer.2008.08.022

    Article  CAS  Google Scholar 

  34. Kim, H. H., Kim, M. J., Ryu, S. J., Ki, C. S., & Park, Y. H. (2016). Effect of fiber diameter on surface morphology, mechanical property, and cell behavior of electrospun poly(ε-caprolactone) mat. Fibers and Polymers, 17(7), 1033–1042. https://doi.org/10.1007/s12221-016-6350-x

    Article  CAS  Google Scholar 

  35. Wojtowicz, A. M., Oliveira, S., Carlson, M. W., Zawadzka, A., Rousseau, C. F., & Baksh, D. (2014). The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. Wound Repair and Regeneration, 22, 246–245. https://doi.org/10.1111/wrr.12154

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ezhilarasu, H., Ramalingam, R., Dhand, C., Lakshminarayanan, R., Sadiq, A., Gandhimathi, C., & Srinivasan, D. K. (2019). Biocompatible aloe vera and tetracycline hydrochloride loaded hybrid nanofibrous scaffolds for skin tissue engineering. International journal of molecular sciences, 20(20), 5174. https://doi.org/10.3390/ijms20205174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de la Cruz, X. M., Mandujano-Chávez, A., Browne, D. R., Devarenne, T. P., Sánchez-Segura, L., López, M. G., & Lozoya-Gloria, E. (2021). In silico and cellular differences related to the cell division process between the a and b races of the colonial microalga botryococcus braunii. Biomolecules, 11(10), 1463. https://doi.org/10.3390/BIOM11101463/S1

    Article  Google Scholar 

  38. Jaganathan, S. K., & Mani, M. P. (2019). Single-stage synthesis of electrospun polyurethane scaffold impregnated with zinc nitrate nanofibers for wound healing applications. Journal of Applied Polymer Science, 136(3), 1–9. https://doi.org/10.1002/app.46942

    Article  CAS  Google Scholar 

  39. Jaganathan, S. K., Mani, M. P., & Khudzari, A. Z. M. (2019). Electrospun combination of peppermint oil and copper sulphate with conducive physico-chemical properties for wound dressing applications. Polymers, 11(4), 586. https://doi.org/10.3390/POLYM11040586

    Article  PubMed  PubMed Central  Google Scholar 

  40. Barzegar, S., Zare, M. R., Shojaei, F., Zareshahrabadi, Z., Koohi-Hosseinabadi, O., Saharkhiz, M. J., … Khorram, M. (2021). Core-shell chitosan/PVA-based nanofibrous scaffolds loaded with Satureja mutica or Oliveria decumbens essential oils as enhanced antimicrobial wound dressing. International Journal of Pharmaceutics, 597 120288 https://doi.org/10.1016/J.IJPHARM.2021.120288

  41. Lee, J. Y., Yoon, D., Son, B. C., Rezk, A. I., Park, C. H., & Kim, C. S. (2020). Antimicrobial electrospun nanofibrous mat based on essential oils for biomedical applications. Journal of nanoscience and nanotechnology, 20(9), 5376–5380. https://doi.org/10.1166/JNN.2020.17669

    Article  CAS  PubMed  Google Scholar 

  42. Sofi, H. S., Akram, T., Tamboli, A. H., Majeed, A., Shabir, N., & Sheikh, F. A. (2019). Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. International Journal of Pharmaceutics, 569 118590 https://doi.org/10.1016/J.IJPHARM.2019.118590

  43. CengizÇallioǧlu, F., KesiciGüler, H., & SesliÇetin, E. (2019). Emulsion electrospinning of bicomponent poly (vinyl pyrrolidone)/gelatin nanofibers with thyme essential oil. Materials Research Express, 6(12), 125013. https://doi.org/10.1088/2053-1591/AB5387

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Physics and Nanotechnolgy, and SCIF, SRM Institute for Science and Technology for providing the facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RR, JT; methodology: RR; formal analysis and investigation: VS; writing — original draft preparation: VS; writing — review and editing: RR; resources: KDA; supervision: JT, KDA. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Raghavendra Ramalingam or John Thiruvadigal. D.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadaiyandi, V., Ramalingam, R., Arunachalam, K.D. et al. Essential Oils Infused Poly-ε-Caprolactone/Gelatin Electrospun Nanofibrous Mats: Biocompatibility and Antibacterial Study. Appl Biochem Biotechnol 196, 296–313 (2024). https://doi.org/10.1007/s12010-023-04530-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04530-w

Keywords

Navigation