Skip to main content
Log in

XAV939 Improves the Prognosis of Myocardial Infarction by Blocking the Wnt/β-Catenin Signalling Pathway

  • Methods Paper
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) is closely related to the Wnt signalling pathway, but the role of XAV939 (a Wnt/β-catenin signalling pathway blocker) in MI has not been elucidated. The purpose of this study was to explore the role of XAV939 in mouse hearts and to provide a new and feasible treatment for improving the prognosis of MI. C57BL/6 (male, 8 weeks old, 20–25 g) mice were selected for our study. The MI model was made by ligating the left anterior descending coronary artery. On day 28 after the operation, cardiac function was examined by echocardiography. Infarct size, fibrosis, and angiogenesis were individually measured by TTC assays, Masson’s trichrome staining, and CD31 analysis, respectively. Apoptosis was examined by TdT-mediated dUTP nick-end labelling (TUNEL) staining. The expression of Wnt, β-catenin, caspase 3, Bax, and Bcl-2 was determined by western blotting. XAV939 successfully blocked Wnt/β-catenin signalling pathway activation in cardiomyocytes after MI by promoting the degradation of β-catenin. XAV939 suppressed fibrosis and apoptosis, promoted angiogenesis, reduced myocardial infarct size and improved cardiac function after MI. XAV939 can reduce myocardial infarct size and improve cardiac function by blocking the Wnt/β-catenin signalling pathway, which may provide a new strategy for improving the prognosis of MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Arnett, D. K., Blumenthal, R. S., Albert, M. A., Buroker, A. B., Goldberger, Z. D., Hahn, E. J., et al. (2019). 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation., 140(11), e563-ee95.

    PubMed  PubMed Central  Google Scholar 

  2. Robbers, L., Nijveldt, R., Beek, A. M., Teunissen, P. F. A., Hollander, M. R., Biesbroek, P. S., et al. (2018). The influence of microvascular injury on native T1 and T2* relaxation values after acute myocardial infarction: Implications for non-contrast-enhanced infarct assessment. European Radiology., 28(2), 824–832.

    Article  PubMed  Google Scholar 

  3. Jusic, A., & Devaux, Y. (2020). Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Research in Cardiology., 115(3), 23.

    Article  CAS  PubMed  Google Scholar 

  4. Frangogiannis, N. G. (2008). The immune system and cardiac repair. Pharmacological Research., 58(2), 88–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blankesteijn, W. M. (2020). Interventions in WNT signaling to induce cardiomyocyte proliferation: Crosstalk with other pathways. Molecular Pharmacology., 97(2), 90–101.

    Article  CAS  PubMed  Google Scholar 

  6. Oerlemans, M. I., Goumans, M. J., van Middelaar, B., Clevers, H., Doevendans, P. A., & Sluijter, J. P. (2010). Active Wnt signaling in response to cardiac injury. Basic Research in Cardiology., 105(5), 631–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bastakoty, D., Saraswati, S., Joshi, P., Atkinson, J., Feoktistov, I., Liu, J., et al. (2016). Temporary, systemic inhibition of the WNT/β-catenin pathway promotes regenerative cardiac repair following myocardial infarct. Cell, Stem Cells and Regenerative Medicine, 2(2).

  8. Laeremans, H., Hackeng, T. M., van Zandvoort, M. A., Thijssen, V. L., Janssen, B. J., Ottenheijm, H. C., et al. (2011). Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation., 124(15), 1626–1635.

    Article  CAS  PubMed  Google Scholar 

  9. Zelarayán, L. C., Noack, C., Sekkali, B., Kmecova, J., Gehrke, C., Renger, A., et al. (2008). Beta-Catenin downregulation attenuates ischemic cardiac remodeling through enhanced resident precursor cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 105(50), 19762–19767.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  10. Huang, S. M., Mishina, Y. M., Liu, S., Cheung, A., Stegmeier, F., Michaud, G. A., et al. (2009). Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature., 461(7264), 614–620.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Cui, X., He, Z., Liang, Z., Chen, Z., Wang, H., & Zhang, J. (2017). Exosomes from adipose-derived mesenchymal stem cells protect the myocardium against ischemia/reperfusion injury through Wnt/β-catenin signaling pathway. Journal of Cardiovascular Pharmacology., 70(4), 225–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu, L., Chen, Y., Chen, Y., Yang, W., Han, Y., Lu, L., et al. (2019). Effect of HIF-1α/miR-10b-5p/PTEN on hypoxia-induced cardiomyocyte apoptosis. Journal of the American Heart Association., 8(18), e011948.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pan, S., Zhao, X., Wang, X., Tian, X., Wang, Y., Fan, R., et al. (2018). Sfrp1 attenuates TAC-induced cardiac dysfunction by inhibiting Wnt signaling pathway- mediated myocardial apoptosis in mice. Lipids in Health and Disease., 17(1), 202.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu, S., Chen, J., Shi, J., Zhou, W., Wang, L., Fang, W., et al. (2020). M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Research in Cardiology., 115(2), 22.

    Article  CAS  PubMed  Google Scholar 

  15. Aisagbonhi, O., Rai, M., Ryzhov, S., Atria, N., Feoktistov, I., & Hatzopoulos, A. (2011). Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Disease Models & Mechanisms., 4(4), 469–483.

    Article  CAS  Google Scholar 

  16. Kuizinga, M., Smits, J., Arends, J., & Daemen, M. J. A. P. (1998). AT2 receptor blockade reduces cardiac interstitial cell DNA synthesis and cardiac function after rat myocardial infarction. Journal of Molecular and Cellular Cardiology., 30(2), 425–434.

    Article  CAS  PubMed  Google Scholar 

  17. Lin, Z., & Pu, W. (2014). Strategies for cardiac regeneration and repair. Science Translational Medicine., 6(239), 239rv1.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen, L., Zhuang, J., Singh, S., Wang, K., Xiong, M., Xu, D., et al. (2016). XAV939 inhibits intima formation by decreasing vascular smooth muscle cell proliferation and migration through blocking Wnt signaling. Journal of Cardiovascular Pharmacology., 68(6), 414–424.

    Article  CAS  PubMed  Google Scholar 

  19. Jang, J., Jung, Y., Chae, S., Bae, T., Kim, S., Shim, Y., et al. (2019). XAV939, a Wnt/β-catenin pathway modulator, has inhibitory effects on LPS-induced inflammatory response. Immunopharmacology and Immunotoxicology., 41(3), 394–402.

    Article  CAS  PubMed  Google Scholar 

  20. Mohamed, T., Stone, N., Berry, E., Radzinsky, E., Huang, Y., Pratt, K., et al. (2017). Chemical enhancement of in vitro and in vivo direct cardiac reprogramming. Circulation., 135(10), 978–995.

    Article  CAS  PubMed  Google Scholar 

  21. Jeong, M., Kim, H., Pyun, J., Choi, K., Lee, D., Solhjoo, S., et al. (2017). Cdon deficiency causes cardiac remodeling through hyperactivation of WNT/β-catenin signaling. Proceedings of the National Academy of Sciences of the United States of America., 114(8), E1345-E1E54.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Matteucci, M., Casieri, V., Gabisonia, K., Aquaro, G. D., Agostini, S., Pollio, G., et al. (2016). Magnetic resonance imaging of infarct-induced canonical wingless/integrated (Wnt)/β-catenin/T-cell factor pathway activation, in vivo. Cardiovascular Research., 112(3), 645–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barandon, L., Couffinhal, T., Ezan, J., Dufourcq, P., Costet, P., Alzieu, P., et al. (2003). Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation., 108(18), 2282–2289.

    Article  CAS  PubMed  Google Scholar 

  24. Fu, W. B., Wang, W. E., & Zeng, C. Y. (2019). Wnt signaling pathways in myocardial infarction and the therapeutic effects of Wnt pathway inhibitors. Acta Pharmacologica Sinica., 40(1), 9–12.

    Article  CAS  PubMed  Google Scholar 

  25. Abeyrathna, P., & Su, Y. (2015). The critical role of Akt in cardiovascular function. Vascular Pharmacology., 74, 38–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meyer, I., Jungmann, A., Dieterich, C., Zhang, M., Lasitschka, F., Werkmeister, S., et al. (2017). The cardiac microenvironment uses non-canonical WNT signaling to activate monocytes after myocardial infarction. EMBO Molecular Medicine, 9(9), 1279–1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsa, E., Burridge, P., Yu, K., Ahrens, J., Termglinchan, V., Wu, H., et al. (2016). Transcriptome profiling of patient-specific human iPSC-cardiomyocytes predicts individual drug safety and efficacy responses in vitro. Cell Stem Cell, 19(3), 311–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhuang, Y., Liao, Y., Liu, B., Fang, Z., Chen, L., Min, L., et al. (2018). MicroRNA-27a mediates the Wnt/β-catenin pathway to affect the myocardial fibrosis in rats with chronic heart failure. Cardiovascular Therapeutics, 2018, e12468.

Download references

Funding

This research was supported by grants from the key project of Jiangsu Vocational College of Medicine (no. 20229JH02) and the General Project of Natural Science Foundation in Hainan Province, China (no. 821MS0851).

Author information

Authors and Affiliations

Authors

Contributions

Min Pan conceived the study and designed experiments. Zhu Zhang drafted the manuscript and performed the experiments. Jiancheng Qi and Xiucai Fan collected and analyzed data. Min Pan and Zhu Zhang confirm the authenticity of all the raw data. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Min Pan.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures were in accordance with the regulations of the Ethics Committee of Laboratory Animal Centre of Nantong University and were performed in accordance with the Guide for the Declaration of Helsinki.

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Qi, J., Fan, X. et al. XAV939 Improves the Prognosis of Myocardial Infarction by Blocking the Wnt/β-Catenin Signalling Pathway. Appl Biochem Biotechnol 196, 605–615 (2024). https://doi.org/10.1007/s12010-023-04485-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04485-y

Keywords

Navigation