Skip to main content

Advertisement

Log in

The Interaction of OTUB1 and TRAF3 Mediates NLRP3 Inflammasome Activity to Regulate TGF-β1-induced BEAS-2B Cell Injury

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Asthma is a frequently chronic respiratory disease with inflammation and remodeling in the airway. OTUB1 has been reported to be associated with pulmonary diseases. However, the role and potential mechanism of OTUB1 in asthma remain unclear. The expressions of OTUB1 in the bronchial mucosal tissues of asthmatic children and TGF-β1-induced BEAS-2B cells were determined. The biological behaviors were assessed in an asthma in vitro model using a loss-function approach. The contents of inflammatory cytokines were detected by ELISA kits. The related protein expressions were performed using western blot assay. Besides, the interaction between OTUB1 and TRAF3 was detected by Co-IP and ubiquitination assays. Our results showed that OTUB1 level was increased in asthmatic bronchial mucosal tissues and TGF-β1-induced BEAS-2B cells. OTUB1 knockdown promoted proliferation, inhibited apoptosis and EMT of TGF-β1-treated cells. The inhibition of OTUB1 attenuated the TGF-β1-induced inflammation and remodeling. Furthermore, OTUB1 knockdown inhibited the deubiquitination of TRAF3 and further suppressed the activation of NLRP3 inflammasome. The overexpression of TRAF3 or NLRP3 reversed the positive role of OTUB1 knockdown in TGF-β1-induced cells injury. Collectively, OTUB1 deubiquitinates TRAF3 to activate NLRP3 inflammasome, thereby leading to inflammation and remodeling of TGF-β1-induced cells, and further promoting the pathogenesis of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data and materials used to support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Aachoui, Y., Sagulenko, V., Miao, E. A., & Stacey, K. J. (2013). Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Current opinion in microbiology, 16(3), 319–326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Baietti, M. F., Simicek, M., Abbasi Asbagh, L., Radaelli, E., Lievens, S., Crowther, J., et al. (2016). OTUB1 triggers lung cancer development by inhibiting RAS monoubiquitination. Embo Molecular Medicine, 8(3), 288–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bel, E. H. (2013). Clinical practice. Mild asthma. New England Journal Of Medicine, 369(6), 549–557.

    Article  PubMed  CAS  Google Scholar 

  4. Besnard, A. G., Guillou, N., Tschopp, J., Erard, F., Couillin, I., Iwakura, Y., et al. (2011). NLRP3 inflammasome is required in murine asthma in the absence of aluminum adjuvant. Allergy, 66(8), 1047–1057.

    Article  PubMed  CAS  Google Scholar 

  5. Bisserier, M., Milara, J., Abdeldjebbar, Y., Gubara, S., Jones, C., Bueno-Beti, C., et al. (2020). AAV1.SERCA2a gene therapy reverses pulmonary fibrosis by blocking the STAT3/FOXM1 pathway and promoting the SNON/SKI Axis. Molecular therapy: the journal of the American Society of Gene Therapy, 28(2), 394–410.

    Article  PubMed  CAS  Google Scholar 

  6. Chakir, J., Shannon, J., Molet, S., Fukakusa, M., Elias, J., Laviolette, M., et al. (2003). Airway remodeling-associated mediators in moderate to severe asthma: Effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. The Journal Of Allergy And Clinical Immunology, 111(6), 1293–1298.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, X., Xiao, Z., Jiang, Z., Jiang, Y., Li, W., & Wang, M. (2021). Schisandrin B attenuates Airway inflammation and Airway Remodeling in Asthma by inhibiting NLRP3 inflammasome activation and reducing pyroptosis. Inflammation, 44(6), 2217–2231.

    Article  PubMed  CAS  Google Scholar 

  8. Davies, D. E. (2009). The role of the epithelium in airway remodeling in asthma. Proceedings of the American Thoracic Society, 6(8), 678–682.

  9. Fahy, J. V. (2015). Type 2 inflammation in asthma–present in most, absent in many. Nature reviews Immunology, 15(1), 57–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gagliardo, R., Chanez, P., Gjomarkaj, M., La Grutta, S., Bonanno, A., Montalbano, A. M., et al. (2013). The role of transforming growth factor-β1 in airway inflammation of childhood asthma. Int J Immunopathol Pharmacol, 26(3), 725–738.

    Article  PubMed  CAS  Google Scholar 

  11. Garth, J., Barnes, J. W., & Krick, S. (2018). Targeting Cytokines as Evolving Treatment Strategies in Chronic Inflammatory Airway Diseases.Int J Mol Sci, 19(11).

  12. Guven-Maiorov, E., Keskin, O., Gursoy, A., VanWaes, C., Chen, Z., Tsai, C. J., et al. (2016). TRAF3 signaling: Competitive binding and evolvability of adaptive viral molecular mimicry. Biochimica Et Biophysica Acta, 1860(11 Pt B), 2646–2655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Häcker, H., Tseng, P. H., & Karin, M. (2011). Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nature reviews Immunology, 11(7), 457–468.

    Article  PubMed  Google Scholar 

  14. Hackett, T. L., Warner, S. M., Stefanowicz, D., Shaheen, F., Pechkovsky, D. V., Murray, L. A., et al. (2009). Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-beta1. American Journal Of Respiratory And Critical Care Medicine, 180(2), 122–133.

    Article  PubMed  CAS  Google Scholar 

  15. Holgate, S. T., Roberts, G., Arshad, H. S., Howarth, P. H., & Davies, D. E. (2009). The role of the airway epithelium and its interaction with environmental factors in asthma pathogenesis. Proceedings of the American Thoracic Society, 6(8), 655–659.

  16. Horimasu, Y., Ishikawa, N., Taniwaki, M., Yamaguchi, K., Hamai, K., Iwamoto, H., et al. (2017). Gene expression profiling of idiopathic interstitial pneumonias (IIPs): Identification of potential diagnostic markers and therapeutic targets. BMC medical genetics, 18(1), 88.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Im, H., & Ammit, A. J. (2014). The NLRP3 inflammasome: Role in airway inflammation. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology, 44(2), 160–172.

    Article  PubMed  CAS  Google Scholar 

  18. Kaminska, M., Foley, S., Maghni, K., Storness-Bliss, C., Coxson, H., Ghezzo, H., et al. (2009). Airway remodeling in subjects with severe asthma with or without chronic persistent airflow obstruction. The Journal Of Allergy And Clinical Immunology, 124(1), 45–51e41.

    Article  PubMed  Google Scholar 

  19. Koschel, J., Nishanth, G., Just, S., Harit, K., Kröger, A., Deckert, M., et al. (2021). OTUB1 prevents lethal hepatocyte necroptosis through stabilization of c-IAP1 during murine liver inflammation. Cell death and differentiation, 28(7), 2257–2275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Li, S., Zheng, H., Mao, A. P., Zhong, B., Li, Y., Liu, Y., et al. (2010). Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. Journal Of Biological Chemistry, 285(7), 4291–4297.

    Article  PubMed  CAS  Google Scholar 

  21. Liao, Z., Xiao, H. T., Zhang, Y., Tong, R. S., Zhang, L. J., Bian, Y., et al. (2015). IL-1β: A key modulator in asthmatic airway smooth muscle hyper-reactivity. Expert review of respiratory medicine, 9(4), 429–436.

    Article  PubMed  CAS  Google Scholar 

  22. Liu, C., Zhang, X., Xiang, Y., Qu, X., Liu, H., Liu, C., et al. (2018). Role of epithelial chemokines in the pathogenesis of airway inflammation in asthma (review). Molecular Medicine Reports, 17(5), 6935–6941.

    PubMed  CAS  Google Scholar 

  23. Liu, Z., Chen, S., Yang, Y., Lu, S., Zhao, X., Hu, B., et al. (2019). MicroRNA6713p regulates the development of knee osteoarthritis by targeting TRAF3 in chondrocytes. Molecular Medicine Reports, 20(3), 2843–2850.

    PubMed  CAS  Google Scholar 

  24. Liu, E., Sun, H., Wu, J., & Kuang, Y. (2020). MiR-92b-3p regulates oxygen and glucose deprivation-reperfusion-mediated apoptosis and inflammation by targeting TRAF3 in PC12 cells. Experimental Physiology, 105(10), 1792–1801.

    Article  PubMed  CAS  Google Scholar 

  25. Liu, Z., Wang, T., She, Y., Wu, K., Gu, S., Li, L. (2021). N6-methyladenosine-modified circIGF2BP3 inhibits CD8 + T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Molecular Cancer, 20(1).

  26. Mariathasan, S., & Monack, D. M. (2007). Inflammasome adaptors and sensors: Intracellular regulators of infection and inflammation. Nature reviews Immunology, 7(1), 31–40.

    Article  PubMed  CAS  Google Scholar 

  27. Moheimani, F., Hsu, A. C., Reid, A. T., Williams, T., Kicic, A., Stick, S. M., et al. (2016). The genetic and epigenetic landscapes of the epithelium in asthma. Respiratory Research, 17(1), 119.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Peng, Y., Xu, R., & Zheng, X. (2014). HSCARG negatively regulates the cellular antiviral RIG-I like receptor signaling pathway by inhibiting TRAF3 ubiquitination via recruiting OTUB1.PLoS pathogens, 10(4), e1004041.

  29. Pu, Y., Liu, Y. Q., Zhou, Y., Qi, Y. F., Liao, S. P., Miao, S. K., et al. (2020). Dual role of RACK1 in airway epithelial mesenchymal transition and apoptosis. Journal Of Cellular And Molecular Medicine, 24(6), 3656–3668.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ren, X., Han, L., Li, Y., Zhao, H., Zhang, Z., Zhuang, Y. (2020). Isorhamnetin attenuates TNF-α-induced inflammation, proliferation, and migration in human bronchial epithelial cells via MAPK and NF-κB pathways. Anatomical record (Hoboken, N.J.: 2007).

  31. Ricciardolo, F. L., Di Stefano, A., van Krieken, J. H., Sont, J. K., van Schadewijk, A., Rabe, K. F., et al. (2003). Proliferation and inflammation in bronchial epithelium after allergen in atopic asthmatics. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology, 33(7), 905–911.

    Article  PubMed  CAS  Google Scholar 

  32. Ruiz-Serrano, A., Monne Rodriguez, J. M., Gunter, J., Sherman, S. P. M., Jucht, A. E., Fluechter, P. (2021). OTUB1 regulates lung development, adult lung tissue homeostasis, and respiratory control.FASEB J, 35(12), e22039.

  33. Saglani, S., & Lloyd, C. M. (2015). Novel concepts in airway inflammation and remodelling in asthma. European Respiratory Journal, 46(6), 1796–1804.

    Article  PubMed  CAS  Google Scholar 

  34. Saldana, M., VanderVorst, K., Berg, A. L., Lee, H., & Carraway, K. L. (2019). Otubain 1: A non-canonical deubiquitinase with an emerging role in cancer. Endocrine-related cancer, 26(1), R1–r14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Semlali, A., Jacques, E., Rouabhia, M., Milot, J., Laviolette, M., & Chakir, J. (2010). Regulation of epithelial cell proliferation by bronchial fibroblasts obtained from mild asthmatic subjects. Allergy, 65(11), 1438–1445.

    Article  PubMed  CAS  Google Scholar 

  36. Shen, Y., Liu, W. W., Zhang, X., Shi, J. G., Jiang, S., Zheng, L., et al. (2020). TRAF3 promotes ROS production and pyroptosis by targeting ULK1 ubiquitination in macrophages. The Faseb Journal, 34(5), 7144–7159.

    Article  PubMed  CAS  Google Scholar 

  37. Shin, J. M., Park, J. H., Yang, H. W., Moon, J. W., Lee, H. M., & Park, I. H. (2021). miR-29b Regulates TGF-β1-Induced Epithelial-Mesenchymal Transition by Inhibiting Heat Shock Protein 47 Expression in Airway Epithelial Cells. Int J Mol Sci, 22(21).

  38. Siu, K. L., Yuen, K. S., Castaño-Rodriguez, C., Ye, Z. W., Yeung, M. L., Fung, S. Y., et al. (2019). Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. Faseb j, 33(8), 8865–8877.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Song, Y., Wang, Z., Jiang, J., Piao, Y., Li, L., Xu, C., et al. (2020). DEK-targeting aptamer DTA-64 attenuates bronchial EMT-mediated airway remodelling by suppressing TGF-β1/Smad, MAPK and PI3K signalling pathway in asthma. Journal Of Cellular And Molecular Medicine, 24(23), 13739–13750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sun, J., Huang, N., Ma, W., Zhou, H., & Lai, K. (2019). Protective effects of metformin on lipopolysaccharide–induced airway epithelial cell injury via NF–κB signaling inhibition. Molecular Medicine Reports, 19(3), 1817–1823.

    PubMed  CAS  Google Scholar 

  41. Sun, H., Tian, J., & Li, J. (2020). MiR-92b-3p ameliorates inflammation and autophagy by targeting TRAF3 and suppressing MKK3-p38 pathway in caerulein-induced AR42J cells. International Immunopharmacology, 88, 106691.

    Article  PubMed  CAS  Google Scholar 

  42. Sun, X., Shen, W., Li, Z., & Zhang, W. (2022). CCCTC-binding factor transcriptionally regulates Galectin-7 and activates the JNK/STAT3 axis to aggravate bronchial epithelial cell injury. Pediatric Pulmonology, 57(1), 90–99.

    Article  PubMed  Google Scholar 

  43. Swanson, K. V., Deng, M., & Ting, J. P. (2019). The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nature reviews Immunology, 19(8), 477–489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Tsai, Y. M., Chiang, K. H., Hung, J. Y., Chang, W. A., Lin, H. P., Shieh, J. M., et al. (2018). Der f1 induces pyroptosis in human bronchial epithelia via the NLRP3 inflammasome. International Journal Of Molecular Medicine, 41(2), 757–764.

    PubMed  CAS  Google Scholar 

  45. Tseng, P. H., Matsuzawa, A., Zhang, W., Mino, T., Vignali, D. A., & Karin, M. (2010). Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nature Immunology, 11(1), 70–75.

    Article  PubMed  CAS  Google Scholar 

  46. Wan, J., Cao, Y., Abdelaziz, M. H., Huang, L., Kesavan, D. K., Su, Z. (2019). Downregulated Rac1 promotes apoptosis and inhibits the clearance of apoptotic cells in airway epithelial cells, which may be associated with airway hyper-responsiveness in asthma.Scandinavian journal of immunology, 89(5), e12752.

  47. Wang, X., Mulas, F., Yi, W., Brunn, A., Nishanth, G., Just, S. (2019). OTUB1 inhibits CNS autoimmunity by preventing IFN-gamma-induced hyperactivation of astrocytes. The EMBO journal, 38(10).

  48. Xiao, Y., Xu, W., & Su, W. (2018). NLRP3 inflammasome: A likely target for the treatment of allergic diseases. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology, 48(9), 1080–1091.

    Article  PubMed  CAS  Google Scholar 

  49. Xie, J. J., Guo, Q. Y., Jin, J. Y., & Jin, D. (2019). SP1-mediated overexpression of lncRNA LINC01234 as a ceRNA facilitates non-small-cell lung cancer progression via regulating OTUB1. Journal Of Cellular Physiology, 234(12), 22845–22856.

    Article  PubMed  CAS  Google Scholar 

  50. Xie, M., Yin, Y., Chen, L., Yin, A., Liu, Y., Liu, Y., et al. (2020). Scavenger receptor A impairs interferon response to HBV infection by limiting TRAF3 ubiquitination through recruiting OTUB1. The FEBS journal, 287(2), 310–324.

    Article  PubMed  CAS  Google Scholar 

  51. Xu, F., Gao, J., Bergmann, S., Sims, A. C., Ashbrook, D. G., Baric, R. S., et al. (2020). Genetic dissection of the Regulatory Mechanisms of Ace2 in the infected mouse lung. Frontiers In Immunology, 11, 607314.

    Article  PubMed  CAS  Google Scholar 

  52. Yao, H., Sun, Y., Song, S., Qi, Y., Tao, X., Xu, L., et al. (2017). Protective Effects of Dioscin against Lipopolysaccharide-Induced Acute Lung Injury through Inhibition of oxidative stress and inflammation. Frontiers In Pharmacology, 8, 120.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang, Z., Zhang, T., Feng, R., Huang, H., Xia, T., & Sun, C. (2019). circARF3 alleviates mitophagy-mediated inflammation by targeting miR-103/TRAF3 in mouse adipose tissue. Molecular therapy Nucleic acids, 14, 192–203.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang, B., Yang, C., Wang, R., Wu, J., Zhang, Y., Liu, D., et al. (2020). OTUD7B suppresses Smac mimetic-induced lung cancer cell invasion and migration via deubiquitinating TRAF3. Journal Of Experimental & Clinical Cancer Research: Cr, 39(1), 244.

    Article  PubMed Central  Google Scholar 

  55. Zhang, J. L., Du, B. B., Zhang, D. H., Li, H., Kong, L. Y., Fan, G. J. (2021). OTUB1 alleviates NASH through inhibition of the TRAF6-ASK1 signaling pathways. Hepatology.

Download references

Funding

This study was supported by Scientific Research Support Project of Xi’an Children’s Hospital (NO. 2020C10).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Liqun Shang, Yujie Du, Yali Zhao, Yongqing Zhang, Cuicui Liu. The first draft of the manuscript was written by Liqun Shang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cuicui Liu.

Ethics declarations

Ethics Approval

This study was approved by the ethic committee of Xi’an Children’s Hospital and performed according to the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent to Participate

Written informed consent was obtained from the parents.

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, L., Du, Y., Zhao, Y. et al. The Interaction of OTUB1 and TRAF3 Mediates NLRP3 Inflammasome Activity to Regulate TGF-β1-induced BEAS-2B Cell Injury. Appl Biochem Biotechnol 195, 7060–7074 (2023). https://doi.org/10.1007/s12010-023-04434-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04434-9

Keywords

Navigation