Skip to main content
Log in

Pomegranate Peel Extract Stabilized Selenium Nanoparticles Synthesis: Promising Antimicrobial Potential, Antioxidant Activity, Biocompatibility, and Hemocompatibility

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The green synthesis of selenium nanoparticles (Se NPs) had been synthesized by pomegranate peel extract (PPE). The antimicrobial, antioxidant, and anticancer activities of the synthesized Se NPs, as well as their hemocompatibility, were investigated. Se NPs were characterized by UV–Vis., SEM, XRD, HR-TEM, DLS, EDX, FTIR, and mapping techniques. HR-TEM image represented the spheroidal forms with moderately monodispersed NPs with a mean diameter 14.5 nm. The SEM image of Se NPs, incorporated with PPE, exhibits uniform NP surfaces, and the appearance was clear. The antimicrobial results confirmed the potential of Se NPs to hinder the growth of some tested pathogenic microbes. Results revealed that Se NPs exhibited promising antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, and Streptococcus mutans where inhibition zones were 29, 16, 41, 22, and 54 mm, respectively. Likewise, it exhibited antifungal activity where the values of inhibition zones were 41, 40, 38, and 36 mm against Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus, and A. niger, respectively. The antioxidant activities of Se NPs at concentrations 250–4000 µg/mL were greater than 90% in all cases. Se NP concentrations of 500 µg/mL or less are safe in usage according to hemocompatibility study. Se NPs had an IC50 of 113.73 µg/mL in a cytotoxicity experiment. Results revealed that Se NPs have promising anticancer activities against MCF7 and Mg63 cancerous cell line, where IC50 was 69.8 and 47.9 μg/mL, respectively. In conclusion, Se NPs were successfully biosynthesized using PPE for the first time; these Se NPs had promising antimicrobial, antioxidant, and anticancer activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hendriksen, R. S., Munk, P., Njage, P., Van Bunnik, B., McNally, L., Lukjancenko, O., Röder, T., Nieuwenhuijse, D., Pedersen, S. K., & Kjeldgaard, J. (2019). Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications, 10(1), 1–12.

    Article  CAS  Google Scholar 

  2. Li, Z., Aninditha, T., Griene, B., Francis, J., Renato, P., Serrie, A., Umareddy, I., Boisseau, S., & Hadjiat, Y. (2018). Burden of cancer pain in developing countries: A narrative literature review. ClinicoEconomics and Outcomes Research: CEOR, 10, 675.

    Article  PubMed  Google Scholar 

  3. Menon, S., & Shanmugam, V. K. (2020). Chemopreventive mechanism of action by oxidative stress and toxicity induced surface decorated selenium nanoparticles. Journal of Trace Elements in Medicine and Biology, 62, 126549.

    Article  CAS  PubMed  Google Scholar 

  4. Bajpai, S., Tiwary, S. K., Sonker, M., Joshi, A., Gupta, V., Kumar, Y., Shreyash, N., & Biswas, S. (2021). Recent advances in nanoparticle-based cancer treatment: A review. ACS Applied Nano Materials, 4(7), 6441–6470.

    Article  CAS  Google Scholar 

  5. AbdElkodous, M., El-Husseiny, H. M., El-Sayyad, G. S., Hashem, A. H., Doghish, A. S., Elfadil, D., Radwan, Y., El-Zeiny, H. M., Bedair, H., & Ikhdair, O. A. (2021). Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. Nanotechnology Reviews, 10(1), 1662–1739.

    Article  Google Scholar 

  6. Abdelaziz, A. M., Dacrory, S., Hashem, A. H., Attia, M. S., Hasanin, M., Fouda, H. M., Kamel, S., & ElSaied, H. (2021). Protective role of zinc oxide nanoparticles based hydrogel against wilt disease of pepper plant. Biocatalysis and Agricultural Biotechnology, 35, 102083.

    Article  CAS  Google Scholar 

  7. Dacrory, S., Hashem, A. H., & Hasanin, M. (2021). Synthesis of cellulose based amino acid functionalized nano-biocomplex: Characterization, antifungal activity, molecular docking and hemocompatibility. Environmental Nanotechnology, Monitoring & Management, 15, 100453.

    Article  CAS  Google Scholar 

  8. Elbahnasawy, M. A., Shehabeldine, A. M., Khattab, A. M., Amin, B. H., & Hashem, A. H. (2021). Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: Characterization and anticandidal activity. Journal of Drug Delivery Science and Technology, 62, 102401.

    Article  CAS  Google Scholar 

  9. Elbasuney, S., El-Sayyad, G. S., Tantawy, H., & Hashem, A. H. (2021). Promising antimicrobial and antibiofilm activities of reduced graphene oxide-metal oxide (RGO-NiO, RGO-AgO, and RGO-ZnO) nanocomposites. RSC Advances, 11(42), 25961–25975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hasanin, M., Al Abboud, M. A., Alawlaqi, M. M., Abdelghany, T. M., & Hashem, A. H. (2021). Ecofriendly synthesis of biosynthesized copper nanoparticles with starch-based nanocomposite: antimicrobial, antioxidant, and anticancer activities. Biological Trace Element Research.

  11. Hashem, A. H., Abdelaziz, A. M., Askar, A. A., Fouda, H. M., Khalil, A. M. A., Abd-Elsalam, K. A., & Khaleil, M. M. (2021). Bacillus megaterium-mediated synthesis of selenium nanoparticles and their antifungal activity against Rhizoctonia solani in Faba bean plants. Journal of Fungi, 7(3), 195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hashem, A. H., Al Abboud, M. A., Alawlaqi, M. M., Abdelghany, T. M., & Hasanin, M. (2022). Synthesis of nanocapsules based on biosynthesized nickel nanoparticles and potato starch: antimicrobial, antioxidant, and anticancer activity. Starch‐Stärke, 74(1–2), 2100165.

    Article  CAS  Google Scholar 

  13. Welch, E. C., Powell, J. M., Clevinger, T. B., Fairman, A. E., & Shukla, A. (2021). Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials. Advanced Functional Materials, 31(44), 2104126.

    Article  CAS  Google Scholar 

  14. Kalyane, D., Raval, N., Maheshwari, R., Tambe, V., Kalia, K., & Tekade, R. K. (2019). Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Materials Science and Engineering: C, 98, 1252–1276.

    Article  CAS  PubMed  Google Scholar 

  15. Abdelnour, S. A., Alagawany, M., Hashem, N. M., Farag, M. R., Alghamdi, E. S., Hassan, F. U., Bilal, R. M., Elnesr, S. S., Dawood, M. A., & Nagadi, S. A. (2021). Nanominerals: Fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals, 11(7), 1916.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ikram, M., Javed, B., Raja, N. I., & Mashwani, Z.-u-R. (2021). Biomedical potential of plant-based selenium nanoparticles: a comprehensive review on therapeutic and mechanistic aspects. International Journal of Nanomedicine, 16, 249.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ndwandwe, B. K., Malinga, S. P., Kayitesi, E., & Dlamini, B. C. (2021). Advances in green synthesis of selenium nanoparticles and their application in food packaging. International Journal of Food Science & Technology, 56(6), 2640–2650.

    Article  CAS  Google Scholar 

  18. Zoidis, E., Seremelis, I., Kontopoulos, N., & Danezis, G. P. (2018). Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants, 7(5), 66.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kralova, K., & Jampilek, J. (2021). Responses of medicinal and aromatic plants to engineered nanoparticles. Applied Sciences, 11(4), 1813.

    Article  CAS  Google Scholar 

  20. Khandel, P., Yadaw, R. K., Soni, D. K., Kanwar, L., & Shahi, S. K. (2018). Biogenesis of metal nanoparticles and their pharmacological applications: Present status and application prospects. Journal of Nanostructure in Chemistry, 8(3), 217–254.

    Article  CAS  Google Scholar 

  21. Zambonino, M. C., Quizhpe, E. M., Jaramillo, F. E., Rahman, A., Santiago Vispo, N., Jeffryes, C., & Dahoumane, S. A. (2021). Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. International Journal of Molecular Sciences, 22(3), 989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mulla, N. A., Otari, S. V., Bohara, R. A., Yadav, H. M., & Pawar, S. H. (2020). Rapid and size-controlled biosynthesis of cytocompatible selenium nanoparticles by Azadirachta indica leaves extract for antibacterial activity. Materials Letters, 264, 127353.

    Article  CAS  Google Scholar 

  23. Hashem, A. H., & Salem, S. S. (2021). Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: antimicrobial and anticancer activity. Biotechnology Journal, 2100432.

  24. Ruangtong, J., Jiraroj, T., & T-Thienprasert, N. P. (2020). Green synthesized ZnO nanosheets from banana peel extract possess anti-bacterial activity and anti-cancer activity. Materials Today Communications, 24, 101224.

    Article  CAS  Google Scholar 

  25. Vidovix, T. B., Quesada, H. B., Bergamasco, R., Vieira, M. F., & Vieira, A. M. S. (2021). Adsorption of safranin-O dye by copper oxide nanoparticles synthesized from Punica granatum leaf extract. Environmental Technology, 1–17.

  26. Chums-ard, W., Fawcett, D., Fung, C. C., & Poinern, G. E. J. (2019). Biogenic synthesis of gold nanoparticles from waste watermelon and their antibacterial activity against Escherichia coli and Staphylococcus epidermidis. International Journal of Research in Medical Sciences, 7(7), 2499–2505.

    Article  Google Scholar 

  27. Adelere, I. A., & Lateef, A. (2016). A novel approach to the green synthesis of metallic nanoparticles: The use of agro-wastes, enzymes, and pigments. Nanotechnology Reviews, 5(6), 567–587.

    Article  CAS  Google Scholar 

  28. Rodríguez-Félix, F., López-Cota, A. G., Moreno-Vásquez, M. J., Graciano-Verdugo, A. Z., Quintero-Reyes, I. E., Del-Toro-Sánchez, C. L., & Tapia-Hernández, J. A. (2021). Sustainable-green synthesis of silver nanoparticles using safflower (Carthamus tinctorius L) waste extract and its antibacterial activity. Heliyon, 7(4), e06923.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Del‐Toro‐Sánchez, C. L., Rodríguez‐Félix, F., Cinco‐Moroyoqui, F. J., Juárez, J., Ruiz‐Cruz, S., Wong‐Corral, F. J., Borboa‐Flores, J., Castro‐Enríquez, D. D., Barreras‐Urbina, C. G., & Tapia‐Hernández, J. A. (2021). Recovery of phytochemical from three safflower (Carthamus tinctorius L.) by‐products: antioxidant properties, protective effect of human erythrocytes and profile by UPLC‐DAD‐MS. Journal of Food Processing and Preservation, 45(9), e15765.

    Article  Google Scholar 

  30. Prasannamedha, G., Kumar, P. S., & Shankar, V. (2022). Facile route for synthesis of Fe0/Fe3C/γ-Fe2O3 carbon composite using hydrothermal carbonization of sugarcane bagasse and its use as effective adsorbent for sulfamethoxazole removal. Chemosphere, 289, 133214.

    Article  CAS  PubMed  Google Scholar 

  31. Salem, S. S., Badawy, M. S. E. M., Al-Askar, A. A., Arishi, A. A., Elkady, F. M., & Hashem, A. H. (2022). Green biosynthesis of selenium nanoparticles using orange peel waste: Characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life, 12(6), 893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hashem, A. H., Selim, T. A., Alruhaili, M. H., Selim, S., Alkhalifah, D. H. M., Al Jaouni, S. K., & Salem, S. S. (2022). Unveiling antimicrobial and insecticidal activities of biosynthesized selenium nanoparticles using prickly pear peel waste. Journal of Functional Biomaterials, 13(3), 112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Salem, M. F., Abd-Elraoof, W. A., Tayel, A. A., Alzuaibr, F. M., & Abonama, O. M. (2022). Antifungal application of biosynthesized selenium nanoparticles with pomegranate peels and nanochitosan as edible coatings for citrus green mold protection. Journal of Nanobiotechnology, 20(1), 182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saad, A. M., El-Saadony, M. T., El-Tahan, A. M., Sayed, S., Moustafa, M. A., Taha, A. E., Taha, T. F., & Ramadan, M. M. (2021). Polyphenolic extracts from pomegranate and watermelon wastes as substrate to fabricate sustainable silver nanoparticles with larvicidal effect against Spodoptera littoralis. Saudi Journal of Biological Sciences, 28(10), 5674–5683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. El-Sayyad, G. S., El-Bastawisy, H. S., Gobara, M., & El-Batal, A. I. (2020). Gentamicin-assisted mycogenic selenium nanoparticles synthesized under gamma irradiation for robust reluctance of resistant urinary tract infection-causing pathogens. Biological Trace Element Research, 195(1), 323–342.

    Article  CAS  PubMed  Google Scholar 

  36. El-Batal, A. I., Mosallam, F. M., Ghorab, M. M., Hanora, A., Gobara, M., Baraka, A., Elsayed, M. A., Pal, K., Fathy, R. M., AbdElkodous, M., & El-Sayyad, G. S. (2020). Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells. International Journal of Biological Macromolecules, 156, 1584–1599.

    Article  CAS  PubMed  Google Scholar 

  37. Zaki, A. G., Hasanien, Y. A., & El-Sayyad, G. S. (2022). Novel fabrication of SiO2/Ag nanocomposite by gamma irradiated Fusarium oxysporum to combat Ralstonia solanacearum. AMB Express, 12(1), 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ashour, A. H., El-Batal, A. I., Maksoud, M. I. A. A., El-Sayyad, G. S., Labib, S., Abdeltwab, E., & El-Okr, M. M. (2018). Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology, 40, 141–151.

    Article  CAS  Google Scholar 

  39. Abdel Maksoud, M. I. A., El-Sayyad, G. S., El-Khawaga, A. M., AbdElkodous, M., Abokhadra, A., Elsayed, M. A., Gobara, M., Soliman, L. I., El-Bahnasawy, H. H., & Ashour, A. H. (2020). Nanostructured Mg substituted Mn-Zn ferrites: a magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. Journal of Hazardous Materials, 399, 123000.

    Article  CAS  PubMed  Google Scholar 

  40. El-Sayyad, G. S., AbdElkodous, M., El-Khawaga, A. M., Elsayed, M. A., El-Batal, A. I., & Gobara, M. (2020). Merits of photocatalytic and antimicrobial applications of gamma-irradiated CoxNi1−xFe2O4/SiO2/TiO2; x = 0.9 nanocomposite for pyridine removal and pathogenic bacteria/fungi disinfection: implication for wastewater treatment. RSC Advances, 10(9), 5241–5259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. N.C.f.C.L. Standards. (2002). Reference method for broth dilution antifungal susceptibility testing of yeasts. National Committee for Clinical Laboratory Standards Wayne, PA.

  42. Valgas, C., Souza, S. M. D., Smânia, E., & Smânia, A. (2007). Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology, 38, 369–380.

    Article  Google Scholar 

  43. Hashem, A. H., Khalil, A. M. A., Reyad, A. M., & Salem, S. S. (2021). Biomedical applications of mycosynthesized selenium nanoparticles using Penicillium expansum ATTC 36200. Biological Trace Element Research, 1–11.

  44. Yildirim, A., Mavi, A., & Kara, A. (2001). Determination of antioxidant and antimicrobial activities of L. extracts. Rumex crispus Journal of Agricultural and Food Chemistry, 49(8).

  45. Zhu, J., Han, H., Li, F., Wang, X., Yu, J., Qin, X., & Wu, D. (2019). Peptide-functionalized amino acid-derived pseudoprotein-based hydrogel with hemorrhage control and antibacterial activity for wound healing. Chemistry of Materials, 31(12), 4436–4450.

    Article  CAS  Google Scholar 

  46. Van de Loosdrecht, A., Beelen, R., Ossenkoppele, G., Broekhoven, M., & Langenhuijsen, M. (1994). A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. Journal of Immunological Methods, 174(1–2), 311–320.

    Article  CAS  PubMed  Google Scholar 

  47. Khalil, A., Abdelaziz, A., Khaleil, M., & Hashem, A. (2020). Fungal endophytes from leaves of Avicennia marina growing in semi‐arid environment as a promising source for bioactive compounds. Letters in Applied Microbiology.

  48. El Shafey, A. M. (2020). Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing and Synthesis, 9(1), 304–339.

    Article  Google Scholar 

  49. Fahimirad, S., Ajalloueian, F., & Ghorbanpour, M. (2019). Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicology and Environmental Safety, 168, 260–278.

    Article  CAS  PubMed  Google Scholar 

  50. Paiva-Santos, A. C., Herdade, A. M., Guerra, C., Peixoto, D., Pereira-Silva, M., Zeinali, M., Mascarenhas-Melo, F., Paranhos, A., & Veiga, F. (2021). Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. International Journal of Pharmaceutics, 597, 120311.

    Article  CAS  PubMed  Google Scholar 

  51. Yilmaz, M. T., İspirli, H., Taylan, O., & Dertli, E. (2021). A green nano-biosynthesis of selenium nanoparticles with Tarragon extract: Structural, thermal, and antimicrobial characterization. LWT, 141, 110969.

    Article  CAS  Google Scholar 

  52. El-Ghazaly, M. A., Fadel, N., Rashed, E., El-Batal, A., & Kenawy, S. (2016). Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Canadian Journal of Physiology and Pharmacology, 95(2), 101–110.

    Article  PubMed  Google Scholar 

  53. El-Batal, A., Sidkey, N. M., Ismail, A., Arafa, R. A., & Fathy, R. M. (2016). Impact of silver and selenium nanoparticles synthesized by gamma irradiation and their physiological response on early blight disease of potato. Journal of Chemical and Pharmaceutical Research, 8(4), 934–951.

    CAS  Google Scholar 

  54. Akhtar, S., Ismail, T., Fraternale, D., & Sestili, P. (2015). Pomegranate peel and peel extracts: Chemistry and food features. Food Chemistry, 174, 417–425.

    Article  CAS  PubMed  Google Scholar 

  55. Nasiriboroumand, M., Montazer, M., & Barani, H. (2018). Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract. Journal of Photochemistry and Photobiology B: Biology, 179, 98–104.

    Article  CAS  PubMed  Google Scholar 

  56. Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, ACS Publications.

  57. Attia, M. S., El-Sayyad, G. S., Saleh, S. S., Balabel, N. M., & El-Batal, A. I. (2019). Spirulina platensis-polysaccharides promoted green silver nanoparticles production using gamma radiation to suppress the expansion of pear fire blight-producing. Erwinia amylovora. Journal of Cluster Science.

  58. Prasad, K. S., & Selvaraj, K. (2014). Biogenic synthesis of selenium nanoparticles and their effect on As (III)-induced toxicity on human lymphocytes. Biological Trace Element Research, 157(3), 275–283.

    Article  CAS  PubMed  Google Scholar 

  59. Elkodous, M. A., El-Sayyad, G. S., Mohamed, A. E., Pal, K., Asthana, N., de Souza Junior, F. G., Mosallam, F. M., Gobara, M., & El-Batal, A. I. (2019). Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi1−xFe2O4; X = 0.9/SiO2/TiO2). Journal of Materials Science: Materials in Electronics.

  60. El-Batal, A. I., Al-Hazmi, N. E., Mosallam, F. M., & El-Sayyad, G. S. (2018). Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microbial Pathogenesis, 118, 159–169.

    Article  CAS  PubMed  Google Scholar 

  61. Abdel-Rafei, M. K., Thabet, N. M., Abdel Maksoud, M. I. A., Abd Elkodous, M., Kawamura, G., Matsuda, A., Ashour, A. H., El-Batal, A. I., & El-Sayyad, G. S. (2021). Influence of Ce3+ substitution on antimicrobial and antibiofilm propertieS of ZnCexFe2−xO4 nanoparticles (X = 0.0, 0.02, 0.04, 0.06, and 0.08) conjugated with ebselen and its role subsidised with γ-radiation in mitigating human TNBC and colorectal adenocarcinoma proliferation in vitro. International Journal of Molecular Sciences, 22(18), 10171.

  62. Baraka, A., Dickson, S., Gobara, M., El-Sayyad, G. S., Zorainy, M., Awaad, M. I., Hatem, H., Kotb, M. M., & Tawfic, A. (2017). Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chemical Papers, 71(11), 2271–2281.

    Article  CAS  Google Scholar 

  63. Maksoud, M. A., El-ghandour, A., El-Sayyad, G. S., Awed, A., Fahim, R. A., Atta, M., Ashour, A., El-Batal, A. I., Gobara, M., & Abdel-Khalek, E. (2019). Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. Journal of Materials Science: Materials in Electronics, 1–12.

  64. Bai, K., Hong, B., He, J., Hong, Z., & Tan, R. (2017). Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. International Journal of Nanomedicine, 12, 4527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Elakraa, A. A., Salem, S. S., El-Sayyad, G. S., & Attia, M. S. (2022). Cefotaxime incorporated bimetallic silver-selenium nanoparticles: Promising antimicrobial synergism, antibiofilm activity, and bacterial membrane leakage reaction mechanism. RSC Advances, 12(41), 26603–26619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Belavi, P., Chavan, G., Naik, L., Somashekar, R., & Kotnala, R. (2012). Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Materials Chemistry and Physics, 132(1), 138–144.

    Article  CAS  Google Scholar 

  67. Mohammed, G., Al-Jassani, M., & Hameed, I. (2016). Antibacterial, antifungal activity and chemical analysis of Punica grantanum (Pomegranate peel) using GCMS and FTIR spectroscopy. International Journal of Pharmacognosy and Phytochemical Research, 8(3), 480–494.

    Google Scholar 

  68. Pereira, P. H. F., Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Moates, G. K., Wellner, N., Waldron, K. W., & Azeredo, H. M. (2016). Pectin extraction from pomegranate peels with citric acid. International Journal of Biological Macromolecules, 88, 373–379.

    Article  CAS  PubMed  Google Scholar 

  69. Oliveira, R. N., Mancini, M. C., Oliveira, F. C. S. d., Passos, T. M., Quilty, B., Thiré, R. M. d.S. M., & McGuinness, G. B. (2016). FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio de Janeiro), 21, 767–779.

  70. Al-Qahtani, K. M. (2015). Heavy metals removal from polluted water by activated carbon prepared from pomegranate peel. American-Eurasian Journal of Agricultural Environmental Sciences, 15(4), 595–602.

    Google Scholar 

  71. El-Batal, A. I., Al-Hazmi, N. E., Farrag, A. A., Elsayed, M. A., El-Khawaga, A. M., El-Sayyad, G. S., & Elshamy, A. A. (2022). Antimicrobial synergism and antibiofilm activity of amoxicillin loaded citric acid-magnesium ferrite nanocomposite: Effect of UV-illumination, and membrane leakage reaction mechanism. Microbial Pathogenesis, 164, 105440.

    Article  CAS  PubMed  Google Scholar 

  72. Yang, B., Chen, Y., & Shi, J. (2019). Reactive oxygen species (ROS)-based nanomedicine. Chemical Reviews, 119(8), 4881–4985.

    Article  CAS  PubMed  Google Scholar 

  73. Madkour, L. H. (2020). Reactive oxygen species (ROS), nanoparticles, and endoplasmic reticulum (er) stress-induced cell death mechanisms, Academic Press.

  74. Nguyen, T. H., Vardhanabhuti, B., Lin, M., & Mustapha, A. (2017). Antibacterial properties of selenium nanoparticles and their toxicity to Caco-2 cells. Food Control, 77, 17–24.

    Article  CAS  Google Scholar 

  75. Xu, L., Xu, M., Wang, R., Yin, Y., Lynch, I., & Liu, S. (2020). The crucial role of environmental coronas in determining the biological effects of engineered nanomaterials. Small (Weinheim an der Bergstrasse, Germany), 16(36), 2003691.

    Article  CAS  Google Scholar 

  76. El-Batal, A. I., Mosallam, F. M., & El-Sayyad, G. S. (2018). Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes. Journal of Cluster Science, 29(6), 1003–1015.

    Article  CAS  Google Scholar 

  77. Ghobashy, M. M., Soliman, Y. S., Wahab Mahmoud, M. A., El-Sayyad, G. S., & Abdel-Fattah, A. A. (2022). Radiation synthesis and in vitro evaluation of the antimicrobial property of functionalized nanopolymer-based poly (propargyl alcohol) against multidrug resistance microbes. Microbial Pathogenesis, 105777.

  78. Abd Elkodous, M., El-Sayyad, G. S., Abdelrahman, I. Y., El-Bastawisy, H. S., Mohamed, A. E., Mosallam, F. M., Nasser, H. A., Gobara, M., Baraka, A., Elsayed, M. A., & El-Batal, A. I. (2019). Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids and Surfaces B: Biointerfaces, 180, 411–428.

  79. Maksoud, M. A., El-Sayyad, G. S., El-Khawaga, A. M., Abd Elkodous, M., Abokhadra, A., Elsayed, M. A., Gobara, M., Soliman, L., El-Bahnasawy, H., & Ashour, A. (2020). Nanostructured Mg substituted Mn-Zn ferrites: a magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. Journal of Hazardous Materials, 399, 123000.

  80. Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1), 11–26.

    Article  CAS  PubMed  Google Scholar 

  81. Tinggi, U. (2008). Selenium: Its role as antioxidant in human health. Environmental Health and Preventive Medicine, 13(2), 102–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shubharani, R., Mahesh, M., & Yogananda Murthy, V. (2019). Biosynthesis and characterization, antioxidant and antimicrobial activities of selenium nanoparticles from ethanol extract of bee propolis. Journal of Nanomedicine & Nanotechnology 10(522), 2.

  83. Forootanfar, H., Adeli-Sardou, M., Nikkhoo, M., Mehrabani, M., Amir-Heidari, B., Shahverdi, A. R., & Shakibaie, M. (2014). Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. Journal of Trace Elements in Medicine and Biology, 28(1), 75–79.

    Article  CAS  PubMed  Google Scholar 

  84. Dawood, M. A., Basuini, M. F. E., Yilmaz, S., Abdel-Latif, H. M., Kari, Z. A., Abdul Razab, M. K. A., Ahmed, H. A., Alagawany, M., & Gewaily, M. S. (2021). Selenium nanoparticles as a natural antioxidant and metabolic regulator in aquaculture: a review. Antioxidants, 10(9), 1364.

  85. Aula, S., Lakkireddy, S., Swamy, A., Kapley, A., Jamil, K., Tata, N. R., & Hembram, K. (2014). Biological interactions in vitro of zinc oxide nanoparticles of different characteristics. Materials Research Express, 1(3), 035041.

    Article  CAS  Google Scholar 

  86. Salem, S. S., & Fouda, A. (2020). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biological Trace Element Research.

  87. Khalil, A. M. A., Abdelaziz, A. M., Khaleil, M. M., & Hashem, A. H. (2020). Fungal endophytes from leaves of Avicennia marina growing in semi‐arid environment as a promising source for bioactive compounds. Letters in Applied Microbiology.

  88. Ioset, J-R., Brun, R., Wenzler, T., Kaiser, M., & Yardley, V. (2009). Drug screening for kinetoplastids diseases, a training manual for screening in neglected diseases.

  89. Aboul-Fadl, T. (2005). Selenium derivatives as cancer preventive agents. Current Medicinal Chemistry-Anti-Cancer Agents, 5(6), 637–652.

    Article  CAS  PubMed  Google Scholar 

  90. Pi, J., Yang, F., Jin, H., Huang, X., Liu, R., Yang, P., & Cai, J. (2013). Selenium nanoparticles induced membrane bio-mechanical property changes in MCF-7 cells by disturbing membrane molecules and F-actin. Bioorganic & Medicinal Chemistry Letters, 23(23), 6296–6303.

    Article  CAS  Google Scholar 

  91. Hassanien, R., Abed-Elmageed, A. A., & Husein, D. Z. (2019). Eco-friendly approach to synthesize selenium nanoparticles: Photocatalytic degradation of sunset Yellow Azo Dye and anticancer activity. ChemistrySelect, 4(31), 9018–9026.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would also like to acknowledge the facilities available at the Faculty of Science (Boys), Al-Azhar University. Also, the authors would like to thank Prof. Mohamed Gobara (Military Technical College, Cairo, Egypt), and Zeiss microscope team in Cairo for their invaluable advice during this study.

Author information

Authors and Affiliations

Authors

Contributions

AHH suggested the research topic, investigated the article, planned the research methodology, wrote the original draft, and participated in the data representation and article revising and editing. ES suggested the research topic, investigated the article, planned the research methodology, wrote the original draft, and participated in the data representation and article revising and editing. OMA wrote the original draft and participated in the data representation and article revising and editing. SS wrote the original draft and participated in the data representation and article revising and editing. SKA wrote the original draft and participated in the data representation and article revising and editing. FME participated in the data representation and article revising and editing. GSE suggested the research topic, investigated the article, planned the research methodology, wrote the original draft, and participated in the data representation and article revising and editing.

Corresponding authors

Correspondence to Amr H. Hashem or Gharieb S. El-Sayyad.

Ethics declarations

Ethical Approval

Not applicable.

Research Involving Human Participation and/or Animals

Not applicable.

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Funding

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 500 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashem, A.H., Saied, E., Ali, O.M. et al. Pomegranate Peel Extract Stabilized Selenium Nanoparticles Synthesis: Promising Antimicrobial Potential, Antioxidant Activity, Biocompatibility, and Hemocompatibility. Appl Biochem Biotechnol 195, 5753–5776 (2023). https://doi.org/10.1007/s12010-023-04326-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04326-y

Keywords

Navigation