Skip to main content
Log in

Theoretical Sensing Performance for Detection of Cyclophosphamide Drug by Using Aluminum Carbide (C3Al) Monolayer: a DFT Study

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Because nanomaterials are highly reactive and electronically sensitive towards a variety of drug molecules, they are thought of as efficient drug sensors. In the present research study, an aluminum carbide (C3Al) monolayer is employed and its interaction is examined with cyclophosphamide (CP) by performing DFT computations. The C3Al monolayer is highly reactive and sensitive towards CP according to the computations. CP interacts with the C3Al monolayer with the adsorption energy of −31.39 kcal/mol. A considerable charge transfer (CT) indicates an enhancement in the conductivity. Also, the charge density is explained based on the electron density differences (EDD). The decrease in CP/C3Al energy gap (Eg) by approximately 52.91% is due to the remarkable effect of adsorption on the LUMO and the HOMO levels. Therefore, due to the decrease in Eg which can generate an electrical signal, the electrical conductivity is considerably increased. These results suggest that the C3Al monolayer can be employed as a proper electronic drug sensor for CP. Also, the recovery time for the desorption process of CP form the surface of C3Al is 351 s at 598 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Confirmed.

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. C Ca: A Cancer Journal For Clinicians, 68, 394–424.

    Google Scholar 

  2. Arruebo, M., Vilaboa, N., Sáez-Gutierrez, B., Lambea, J., Tres, A., Valladares, M., et al. (2011). Assessment of the evolution of cancer treatment therapies. Cancers (Basel), 3, 3279–3330.

    CAS  PubMed  Google Scholar 

  3. Queirós, V., Azeiteiro, U. M., Soares, A. M., & Freitas, R. (2021). The antineoplastic drugs cyclophosphamide and cisplatin in the aquatic environment–Review. Journal of Hazardous Materials, 412, 125028.

  4. Gómez-Canela, C., Santos, M. S., Franquet-Griell, H., Alves, A., Ventura, F., & Lacorte, S. (2020). Predicted environmental concentrations: A useful tool to evaluate the presence of cytostatics in surface waters. Fate and Effects of Anticancer Drugs in the Environment (pp. 27–54). Springer.

  5. Grisolia, C. K. (2002). A comparison between mouse and fish micronucleus test using cyclophosphamide, mitomycin C and various pesticides. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 518, 145–150.

    CAS  Google Scholar 

  6. Chorvatovičová, D., Machová, E., & Šandula, J. (1996). Effect of ultrasonicated carboxymethylglucan on cyclophosphamide induced mutagenicity. Mutation Research/Genetic Toxicology, 371, 115–120.

    Google Scholar 

  7. Zhang, L., Hu, Z., Huang, J., Chen, Z., Li, X., Feng, Z., et al. (2022). Experimental and DFT studies of flower-like Ni-doped Mo2C on carbon fiber paper: A highly efficient and robust HER electrocatalyst modulated by Ni (NO3) 2 concentration. Journal of Advanced Ceramics, 11, 1294–1306.

  8. Sun, X., Li, J., Sun, X., Zheng, J., Wu, Z., Liu, W., et al. (2021). Efficient stabilization of arsenic in the arsenic-bearing lime-ferrate sludge by zero valent iron-enhanced hydrothermal treatment. Chemical Engineering Journal, 421, 129683.

    CAS  Google Scholar 

  9. Lin, H. H. H., & Lin, A. Y. C. (2014). Photocatalytic oxidation of 5-fluorouracil and cyclophosphamide via UV/TiO2 in an aqueous environment. Water research, 48, 559–568.

    CAS  PubMed  Google Scholar 

  10. Isidori, M., Lavorgna, M., Russo, C., Kundi, M., Žegura, B., Novak, M., et al. (2016). Chemical and toxicological characterisation of anticancer drugs in hospital and municipal wastewaters from Slovenia and Spain. Environmental Pollution, 219, 275–287.

    CAS  PubMed  Google Scholar 

  11. Lai, W. F., & Wong, W. T. (2021). Property-tuneable microgels fabricated by using flow-focusing microfluidic geometry for bioactive agent delivery. Pharmaceutics, 13, 787.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, M., Li, C., Zhang, Y., Jia, D., Zhang, X., Hou, Y., et al. (2017). Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. International Journal of Machine Tools and Manufacture, 122, 55–65.

    Google Scholar 

  13. Grung, M., Källqvist, T., Sakshaug, S., Skurtveit, S., & Thomas, K. V. (2008). Environmental assessment of norwegian priority pharmaceuticals based on the EMEA guideline. Ecotoxicology and Environmental Safety, 71, 328–340.

    CAS  PubMed  Google Scholar 

  14. Durán-Alvarez, J. C., Becerril-Bravo, E., Castro, V. S., Jiménez, B., & Gibson, R. (2009). The analysis of a group of acidic pharmaceuticals, carbamazepine, and potential endocrine disrupting compounds in wastewater irrigated soils by gas chromatography–mass spectrometry. Talanta, 78, 1159–1166.

    PubMed  Google Scholar 

  15. Mcdowell, D. C., Huber, M. M., Wagner, M., Von Gunten, U., & Ternes, T. A. (2005). Ozonation of carbamazepine in drinking water: Identification and kinetic study of major oxidation products (39 vol., pp. 8014–8022). Environmental Science & Technology.

  16. Thelusmond, J. R., Strathmann, T. J., & Cupples, A. M. (2016). The identification of carbamazepine biodegrading phylotypes and phylotypes sensitive to carbamazepine exposure in two soil microbial communities. Science of the Total Environment, 571, 1241–1252.

    CAS  PubMed  Google Scholar 

  17. Onmaz, D. E., Abusoglu, S., Ozturk, B., Abusoglu, G., Yerlikaya, F. H., & Unlu, A. (2021). Determination of serum carbamazepine and its metabolite by validated tandem mass spectrometric method and the effect of carbamazepine on various hematological and biochemical parameters. Journal of Pharmaceutical and Biomedical Analysis, 205, 114299.

    Google Scholar 

  18. Pargolghasemi, P., Hoseininezhad-Namin, S., & Jadid, M. P. (2017). Prediction of activities of BRAF (V600E) inhibitors by SW-MLR and GA-MLR methods. Current Computer-Aided Drug Design, 13, 249–261.

    CAS  PubMed  Google Scholar 

  19. Trojanowicz, M. (2002). Determination of pesticides using electrochemical enzymatic biosensors. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 14, 1311–1328.

    CAS  Google Scholar 

  20. Potyrailo, R. A. (2006). Polymeric sensor materials: Toward an alliance of combinatorial and rational design tools? Angewandte Chemie International Edition, 45, 702–723.

  21. Rad, A. S. (2018). Comparison of X 1 2 Y 1 2 (X = Al, B and Y = N, P) fullerene-like nanoclusters toward adsorption of dimethyl ether. Journal of Theoretical and Computational Chemistry, 17, 1850013.

    CAS  Google Scholar 

  22. Shokuhi Rad, A., Zareyee, D., Pouralijan Foukolaei, V., Moghadas, K., & Peyravi, B. (2016). Study on the electronic structure of Al12N12 and Al12P12 fullerene-like nano-clusters upon adsorption of CH3F and CH3Cl. Molecular Physics, 114, 3143–3149.

    CAS  Google Scholar 

  23. Peyghan, A. A., Rastegar, S. F., & Hadipour, N. L. (2014). DFT study of NH3 adsorption on pristine, Ni-and Si-doped graphynes. Physics Letters A, 378, 2184–2190.

    CAS  Google Scholar 

  24. Abbaspour-Gilandeh, E., Aghaei-Hashjin, M., Jahanshahi, P., & Hoseininezhad-Namin, M. S. (2017). One-pot synthesis of pyrano [3, 2-c] quinoline-2, 5-dione derivatives by Fe3O4@ SiO2-SO3H as an efficient and reusable solid acid catalyst. Monatshefte für Chemie-Chemical Monthly, 148, 731–738.

    CAS  Google Scholar 

  25. Rad, A. S., Aghaei, S. M., Aali, E., & Peyravi, M. (2017). Study on the electronic structure of Cr-and Ni-doped fullerenes upon adsorption of adenine: A comprehensive DFT calculation. Diamond and Related Materials, 77, 116–121.

  26. Wu, H., Zhang, F., & Zhang, Z. (2021). Droplet breakup and coalescence of an internal-mixing twin-fluid spray. Physics of Fluids, 33, 013317.

    CAS  Google Scholar 

  27. Li, B., Li, C., Zhang, Y., Wang, Y., Jia, D., Yang, M., et al. (2017). Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. Journal of Cleaner Production, 154, 1–11.

    CAS  Google Scholar 

  28. Perego, P., Giarola, M., Righetti, S. C., Supino, R., Caserini, C., Delia, D., et al. (1996). Association between cisplatin resistance and mutation of p53 gene and reduced bax expression in ovarian carcinoma cell systems. Cancer research, 56, 556–562.

    CAS  PubMed  Google Scholar 

  29. Molina, M., Asadian-Birjand, M., Balach, J., Bergueiro, J., & Miceli, E. (2015). Calderón, M. Stimuli-responsive nanogel composites and their application in nanomedicine. Chemical Society Reviews, 44, 6161–6186.

    CAS  PubMed  Google Scholar 

  30. Singh, B., Khurana, R. K., Garg, B., Saini, S., & Kaur, R. (2017). Stimuli-responsive systems with diverse drug delivery and biomedical applications: Recent updates and mechanistic pathways. Critical Reviews™ in Therapeutic Drug Carrier Systems, 34.

  31. Li, B., Li, C., Zhang, Y., Wang, Y., Jia, D., & Yang, M. (2016). Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chinese Journal of Aeronautics, 29, 1084–1095.

    Google Scholar 

  32. Li, H., Zhang, Y., Li, C., Zhou, Z., Nie, X., Chen, Y., et al. (2022). Extreme pressure and antiwear additives for lubricant: Academic insights and perspectives. The International Journal of Advanced Manufacturing Technology, 120, 1–27.

  33. Wang, X., Li, C., Zhang, Y., Said, Z., Debnath, S., Sharma, S., et al. (2022). Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. The International Journal of Advanced Manufacturing Technology, 119, 631–646.

    Google Scholar 

  34. Liu, Y., Shivananju, B. N., Wang, Y., Zhang, Y., Yu, W., Xiao, S., et al. (2017). Highly efficient and air-stable infrared photodetector based on 2D layered graphene–black phosphorus heterostructure. ACS applied materials & interfaces, 9, 36137–36145.

    CAS  Google Scholar 

  35. Li, R., Du, Z., Qian, X., Li, Y., Martinez-Camarillo, J. C., Jiang, L., et al. (2021). High resolution optical coherence elastography of retina under prosthetic electrode. Quantitative Imaging in Medicine and Surgery, 11, 918–927.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., et al. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. nature, 457, 706–710.

    CAS  PubMed  Google Scholar 

  37. Ahn, J. H., & Hong, B. H. (2014). Graphene for displays that bend. Nature nanotechnology, 9, 737–738.

    PubMed  Google Scholar 

  38. Cui, X., Li, C., Zhang, Y., Ding, W., An, Q., Liu, B., et al. (2022). A comparative assessment of force, temperature and wheel wear in sustainable grinding aerospace alloy using bio-lubricant. Frontiers of Mechanical Engineering.

  39. Duan, Z., Li, C., Zhang, Y., Yang, M., Gao, T., Liu, X., et al. (2022). Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant. Frontiers of Mechanical Engineering.

  40. Yang, Y., Gong, Y., Li, C., Wen, X., & Sun, J. (2021). Mechanical performance of 316 L stainless steel by hybrid directed energy deposition and thermal milling process. Journal of Materials Processing Technology, 291, 117023.

    CAS  Google Scholar 

  41. Large, M. J., Ogilvie, S. P., King, A. A., & Dalton, A. B. (2017). Understanding solvent spreading for Langmuir deposition of nanomaterial films: A Hansen solubility parameter approach. Langmuir, 33, 14766–14771.

  42. Hosseini, M. R., Esfandiarpour, R., Taghipour, S., & Badalkhani-Khamseh, F. (2020). Theoretical study on the Al-doped biphenylene nanosheets as NO sensors. Chemical Physics Letters, 754, 137712.

    CAS  Google Scholar 

  43. Shivananju, B., Hoh, H. Y., Yu, W., & Bao, Q. (2019). Optical biochemical sensors based on 2D materials. Fundamentals and sensing applications of 2D materials (pp. 379–406). Elsevier.

  44. Choi, C., Choi, M. K., Liu, S., Kim, M. S., Park, O. K., Im, C., et al. (2017). Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nature Communications, 8, 1–11.

    Google Scholar 

  45. Lu, S., Yin, Z., Liao, S., Yang, B., Liu, S., Liu, M., et al. (2022). An asymmetric encoder–decoder model for Zn-ion battery lifetime prediction. Energy Reports, 8, 33–50.

    Google Scholar 

  46. Cai, K., Jing, X., Zhang, Y., Li, L., & Lang, X. (2022). A novel reed-leaves like aluminum-doped manganese oxide presetting sodium-ion constructed by coprecipitation method for high electrochemical performance sodium-ion battery. International Journal of Energy Research, 46, 14570–14580.

    CAS  Google Scholar 

  47. Xiao, X., Mu, B., Cao, G., Yang, Y., & Wang, M. (2022). Flexible battery-free wireless electronic system for food monitoring. Journal of Science: Advanced Materials and Devices, 7, 100430.

    CAS  Google Scholar 

  48. Li, L., Zhang, D., Deng, J., Gou, Y., Fang, J., Cui, H., et al. (2021). Carbon-based materials for fast charging lithium-ion batteries. Carbon, 183, 721–734.

    CAS  Google Scholar 

  49. Li, J., Wan, C., Wang, C., Zhang, H., & Chen (2020). X. 2D material chemistry: Graphdiyne-based biochemical sensing. Chemical Research in Chinese Universities, 36, 622–630.

  50. Liu, X., Liu, J., Yang, H., Huang, B., & Zeng, G. (2022). Design of a high-performance graphene/SiO 2-Ag periodic grating/MoS 2 surface plasmon resonance sensor. Applied Optics, 61, 6752–6760.

    CAS  PubMed  Google Scholar 

  51. Chen, W., Ouyang, J., Liu, H., Chen, M., Zeng, K., Sheng, J., et al. (2017). Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Advanced Materials, 29, 1603864.

    Google Scholar 

  52. Rajaji, U., Ganesh, P. S., Kim, S. Y., Govindasamy, M., Alshgari, R. A., & Liu, T. Y. (2022). MoS2 sphere/2D S-Ti3C2 MXene nanocatalysts on laser-induced graphene electrodes for hazardous aristolochic acid and Roxarsone electrochemical detection. ACS Applied Nano Materials, 5, 3252–3264.

  53. Rajaji, U., Govindasamy, M., Sha, R., Alshgari, R. A., Juang, R. S., & Liu, T. Y. (2022). Surface engineering of 3D spinel Zn3V2O8 wrapped on sulfur doped graphitic nitride composites: Investigation on the dual role of electrocatalyst for simultaneous detection of antibiotic drugs in biological fluids. Composites Part B: Engineering, 242, 110017.

  54. Wang, J. (2005). Nanomaterial-based electrochemical biosensors. The Analyst, 130, 421–426.

    CAS  PubMed  Google Scholar 

  55. Song, S., Shen, H., Wang, Y., Chu, X., Xie, J., Zhou, N., et al. (2020). Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids and Surfaces B: Biointerfaces, 185, 110596.

  56. Govindasamy, M., Wang, S. F., Almahri, A., & Rajaji, U. (2021). Effects of sonochemical approach and induced contraction of core–shell bismuth sulfide/graphitic carbon nitride as an efficient electrode materials for electrocatalytic detection of antibiotic drug in foodstuffs. Ultrasonics Sonochemistry, 72, 105445.

    CAS  PubMed  Google Scholar 

  57. Govindasamy, M., Wang, S. F., Jothiramalingam, R., Noora Ibrahim, S., & Al-lohedan, H. A. (2019). A screen-printed electrode modified with tungsten disulfide nanosheets for nanomolar detection of the arsenic drug roxarsone. Microchimica Acta, 186, 420.

    PubMed  Google Scholar 

  58. Vinoth, S., Govindasamy, M., Wang, S. F., Alothman, A. A., & Alshgari, R. A. (2021). Hydrothermally synthesized cubical zinc manganite nanostructure for electrocatalytic detection of sulfadiazine. Microchimica Acta, 188, 131.

    CAS  PubMed  Google Scholar 

  59. Yang, Y., Yang, M., Li, C., Li, R., Said, Z., Ali, H. M., et al. (2022). Machinability of ultrasonic vibration assisted micro-grinding in biological bone using nanolubricant. Frontiers of Mechanical Engineering.

  60. Reina, G., González-Domínguez, J. M., Criado, A., Vázquez, E., Bianco, A., & Prato, M. (2017). Promises, facts and challenges for graphene in biomedical applications. Chemical Society Reviews, 46, 4400–4416.

    CAS  PubMed  Google Scholar 

  61. Yourdkhani, S., Korona, T., & Hadipour, N. L. (2015). Structure and energetics of complexes of B12N12 with Hydrogen Halides SAPT (DFT) and MP2 study. The Journal of Physical Chemistry A, 119, 6446–6467.

    CAS  PubMed  Google Scholar 

  62. Karjabad, K. D., Mohajeri, S., Shamel, A., Khodadadi-Moghaddam, M., & Rajaei, G. E. (2020). Boron nitride nanoclusters as a sensor for cyclosarin nerve agent: DFT and thermodynamics studies. SN Applied Sciences, 2, 1–8.

    Google Scholar 

  63. Liu, W., Chen, G., Huang, X., & Wu, D. (2012). Yu, Y.-p. DFT studies on the interaction of an open-ended single-walled aluminum nitride nanotube (AlNNT) with gas molecules. The Journal of Physical Chemistry C, 116, 4957–4964.

    CAS  Google Scholar 

  64. Ma, Y., Huo, K., Wu, Q., Lu, Y., Hu, Y., Hu, Z., et al. (2006). Self-templated synthesis of polycrystalline hollow aluminium nitride nanospheres. Journal of Materials Chemistry, 16, 2834–2838.

    CAS  Google Scholar 

  65. Wang, J., Ai, K., & Lu, L. (2019). Flame-retardant porous hexagonal boron nitride for safe and effective radioactive iodine capture. Journal of Materials Chemistry A, 7, 16850–16858.

    CAS  Google Scholar 

  66. Wang, M., Jiang, C., Zhang, S., Song, X., Tang, Y., & Cheng, H. M. (2018). Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nature Chemistry, 10, 667–672.

    CAS  PubMed  Google Scholar 

  67. Tong, X., Zhang, F., Ji, B., Sheng, M., & Tang, Y. (2016). Carbon-coated porous aluminum foil anode for high‐rate, long‐term cycling stability, and high energy density dual‐ion batteries. Advanced Materials, 28, 9979–9985.

    CAS  PubMed  Google Scholar 

  68. Zhang, J., Li, C., Zhang, Y., Yang, M., Jia, D., Liu, G., et al. (2018). Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. Journal of Cleaner Production, 193, 236–248.

    CAS  Google Scholar 

  69. Dai, J., Yuan, J., & Giannozzi, P. (2009). Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study. Applied Physics Letters, 95, 232105.

  70. Ren, K., Sun, M., Luo, Y., Wang, S., Yu, J., & Tang, W. (2019). First-principle study of electronic and optical properties of two-dimensional materials-based heterostructures based on transition metal dichalcogenides and boron phosphide. Applied Surface Science, 476, 70–75.

    CAS  Google Scholar 

  71. Ao, Z., Yang, J., Li, S., & Jiang, Q. (2008). Enhancement of CO detection in Al doped graphene. Chemical Physics Letters, 461, 276–279.

    CAS  Google Scholar 

  72. Chi, M., & Zhao, Y. P. (2009). Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: A first principle study. Computational Materials Science, 46, 1085–1090.

  73. Serinçay, N., & Fellah, M. F. (2020). Acetaldehyde adsorption and detection: A density functional theory study on Al-doped graphene. Vacuum, 175, 109279.

  74. Ao, Z., & Peeters, F. (2010). High-capacity hydrogen storage in Al-adsorbed graphene. Physical Review B, 81, 205406.

    Google Scholar 

  75. Shahabi, D., & Tavakol, H. (2018). A DFT study on the catalytic ability of aluminum doped graphene for the initial steps of the conversion of methanol to gasoline. Computational and Theoretical Chemistry, 1127, 8–15.

    CAS  Google Scholar 

  76. Zhang, X., Tang, Y., Zhang, F., & Lee, C. S. (2016). A novel aluminum–graphite dual-ion battery. Advanced Energy Materials, 6, 1502588.

    Google Scholar 

  77. Ji, B., Zhang, F., Song, X., & Tang, Y. (2017). A novel potassium-ion‐based dual‐ion battery. Advanced Materials, 29, 1700519.

    Google Scholar 

  78. Mu, S., Liu, Q., Kidkhunthod, P., Zhou, X., Wang, W., & Tang, Y. (2021). Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. National Science Review, 8, nwaa178.

    CAS  PubMed  Google Scholar 

  79. Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y., et al. (2019). Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceramics International, 45, 14908–14920.

    CAS  Google Scholar 

  80. Goenka, S., Sant, V., & Sant, S. (2014). Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release, 173, 75–88.

    CAS  PubMed  Google Scholar 

  81. Molaei, M. J. (2021). Two-dimensional (2D) materials beyond graphene in cancer drug delivery, photothermal and photodynamic therapy, recent advances and challenges ahead: A review. Journal of Drug Delivery Science and Technology, 61, 101830.

  82. Li, Z., & Cheng, F. (2022). C3Al: A tunable bandgap semiconductor with high electron mobility and negative Poisson’s ratio. Physica E: Low-dimensional Systems and Nanostructures, 138, 115082.

  83. Wang, J., Yang, Y., Liu, H., Dong, H., Ding, L., & Li, Y. (2022). Adsorption of metal atoms on two-dimensional BC3 and AlC3 nanosheets: Computational studies. Chemical Physics Letters, 792, 139403.

  84. Bao, Q., Zhang, H., Ni, Z., Wang, Y., Polavarapu, L., Shen, Z., et al. (2011). Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Research, 4, 297–307.

    CAS  Google Scholar 

  85. Huang, W., Xie, Z., Fan, T., Li, J., Wang, Y., Wu, L., et al. (2018). Black-phosphorus-analogue tin monosulfide: An emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. Journal of Materials Chemistry C, 6, 9582–9593.

  86. Jiang, Y., Miao, L., Jiang, G., Chen, Y., Qi, X., Jiang, X., et al. (2015). Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Scientific Reports, 5, 1–12.

    Google Scholar 

  87. Huang, Z., Han, W., Tang, H., Ren, L., Chander, D. S., Qi, X., et al. (2015). Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Materials, 2, 035011.

    Google Scholar 

  88. Ahmadi Peyghan, A., Hadipour, N. L., & Bagheri, Z. (2013). Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: Density functional theory studies. The Journal of Physical Chemistry C, 117, 2427–2432.

  89. Hossain, M. R., Hasan, M. M., Rahman, H., Rahman, M. S., Ahmed, F., Ferdous, T., et al. (2021). Adsorption behaviour of metronidazole drug molecule on the surface of hydrogenated graphene, boron nitride and boron carbide nanosheets in gaseous and aqueous medium: A comparative DFT and QTAIM insight. Physica E: Low-dimensional Systems and Nanostructures, 126, 114483.

  90. Vatanparast, M., & Shariatinia, Z. (2018). AlN and AlP doped graphene quantum dots as novel drug delivery systems for 5-fluorouracil drug: Theoretical studies. Journal of Fluorine Chemistry, 211, 81–93.

  91. Min Lee, J., & Lim, H. (2013). Thermally activated magnetization switching in a nanostructured synthetic ferrimagnet. Journal of Applied Physics, 113, 063914.

    Google Scholar 

  92. Yang, H., Wang, Z., Ye, H., Zhang, K., Chen, X., & Zhang, G. (2018). Promoting sensitivity and selectivity of HCHO sensor based on strained InP3 monolayer: A DFT study. Applied Surface Science, 459, 554–561.

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. M. Kadhim: Conceptualization, methodology, software, writing, conceptualization, methodology, management, and responsibility for the research activity planning and execution; A. M. Rheima, S. K. Hachim, S. A. H. Abdullaha: methodology, software, writing—review and editing; Z. T. Taban, S. A. Malik: writing—original draft, methodology, software, review and editing.

Corresponding author

Correspondence to Taleeb Zedan Taban.

Ethics declarations

Ethical Approval

Not required

Consent to Participate

Confirmed

Consent for Publication

Confirmed

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhim, M.M., Rheima, A.M., Hachim, S.K. et al. Theoretical Sensing Performance for Detection of Cyclophosphamide Drug by Using Aluminum Carbide (C3Al) Monolayer: a DFT Study. Appl Biochem Biotechnol 195, 4164–4176 (2023). https://doi.org/10.1007/s12010-022-04305-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04305-9

Keywords

Navigation